login
A377546
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*exp(x))^2 ).
2
1, 2, 18, 294, 7136, 231410, 9421932, 462459242, 26593896912, 1754278123266, 130611457831700, 10835721949072922, 991315043401627320, 99154012317212577218, 10765112531819005907484, 1260860266373297376720810, 158473050112495481401395872, 21275613503385328981848681986
OFFSET
0,2
FORMULA
E.g.f. satisfies A(x) = 1/(1 - x * A(x) * exp(x*A(x)))^2.
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A364985.
a(n) = 2 * n! * Sum_{k=0..n} k^(n-k) * binomial(2*n+k+2,k)/( (2*n+k+2)*(n-k)! ).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x*exp(x))^2)/x))
(PARI) a(n) = 2*n!*sum(k=0, n, k^(n-k)*binomial(2*n+k+2, k)/((2*n+k+2)*(n-k)!));
CROSSREFS
Cf. A364985.
Sequence in context: A374086 A121564 A224384 * A092563 A258922 A192555
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 31 2024
STATUS
approved