login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377546
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*exp(x))^2 ).
4
1, 2, 18, 294, 7136, 231410, 9421932, 462459242, 26593896912, 1754278123266, 130611457831700, 10835721949072922, 991315043401627320, 99154012317212577218, 10765112531819005907484, 1260860266373297376720810, 158473050112495481401395872, 21275613503385328981848681986
OFFSET
0,2
FORMULA
E.g.f. satisfies A(x) = 1/(1 - x * A(x) * exp(x*A(x)))^2.
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A364985.
a(n) = 2 * n! * Sum_{k=0..n} k^(n-k) * binomial(2*n+k+2,k)/( (2*n+k+2)*(n-k)! ).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x*exp(x))^2)/x))
(PARI) a(n) = 2*n!*sum(k=0, n, k^(n-k)*binomial(2*n+k+2, k)/((2*n+k+2)*(n-k)!));
CROSSREFS
Cf. A364985.
Sequence in context: A374086 A121564 A224384 * A092563 A258922 A192555
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 31 2024
STATUS
approved