login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300954
Number of Dyck paths whose sequence of ascent lengths is exactly n+1, n+2, ..., 2n.
2
1, 1, 3, 26, 425, 10647, 365512, 16067454, 864721566, 55202528425, 4083666929771, 343854336973368, 32493430569907125, 3406873823160467912, 392619681705581846700, 49342834390595374213214, 6717520607597479710109299, 984991858956314599670220717, 154785386247352261724279606367
OFFSET
0,3
COMMENTS
Dyck paths counted by a(n) have semilength (3*n^2 + n)/2 = A005449(n) and length A049451(n).
LINKS
FORMULA
a(n) = A107876(2n,n).
EXAMPLE
a(0) = 1: the empty path.
a(1) = 1: uudd.
a(2) = 3: uuuduuuudddddd, uuudduuuuddddd, uuuddduuuudddd.
MAPLE
a:= proc(m) option remember; local b; b:=
proc(n, i) option remember; `if`(i>=2*m, 1,
add(b(n+i-j, i+1), j=1..n+i))
end; b(0, m+1)
end:
seq(a(n), n=0..20);
MATHEMATICA
a[m_] := a[m] = Module[{b}, b[n_, i_] := b[n, i] = If[i >= 2m, 1, Sum[b[n + i - j, i + 1], {j, 1, n + i}]]; b[0, m + 1]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 02 2018, from Maple *)
CROSSREFS
Main diagonal of A107876.
Sequence in context: A306280 A305144 A206402 * A122949 A305113 A251664
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 16 2018
STATUS
approved