login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300951
a(n) = Product_{j=1..floor(n/2)} p(j) where p(j) = j if j is prime else 1.
1
1, 1, 1, 1, 2, 2, 6, 6, 6, 6, 30, 30, 30, 30, 210, 210, 210, 210, 210, 210, 210, 210, 2310, 2310, 2310, 2310, 30030, 30030, 30030, 30030, 30030, 30030, 30030, 30030, 510510, 510510, 510510, 510510, 9699690, 9699690, 9699690, 9699690, 9699690, 9699690, 9699690
OFFSET
0,5
COMMENTS
a(4*n+2)=a(4*n+3)=a(4*n+4)=a(4*n+5) for n >= 1. - Robert Israel, Mar 16 2018
The length of the n-th run is given by 2*A054541(n). - Michel Marcus, Mar 17 2018
LINKS
FORMULA
a(n) = A002110(A056172(n)). - Robert Israel, Mar 16 2018
MAPLE
a := n -> mul(`if`(isprime(j), j, 1), j=1..iquo(n, 2)):
seq(a(n), n=0..44);
# Alternative:
f:= proc(n) option remember;
if n::even and isprime(n/2) then procname(n-1)*n/2 else procname(n-1) fi
end proc:
f(0):= 1:
map(f, [$0..100]); # Robert Israel, Mar 16 2018
MATHEMATICA
{#, #}&/@FoldList[Times, Table[If[PrimeQ[n], n, 1], {n, 0, 30}]]//Flatten (* Harvey P. Dale, Dec 25 2019 *)
PROG
(PARI) a(n) = prod(i=1, n\2, if(isprime(i), i, 1)); \\ Altug Alkan, Mar 16 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 16 2018
STATUS
approved