login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140219
Denominator of the coefficient [x^1] of the Bernoulli twin number polynomial C(n,x).
2
1, 1, 2, 2, 6, 6, 6, 6, 10, 10, 6, 6, 210, 210, 2, 2, 30, 30, 42, 42, 110, 110, 6, 6, 546, 546, 2, 2, 30, 30, 462, 462, 170, 170, 6, 6, 51870, 51870, 2, 2, 330, 330, 42, 42, 46, 46, 6, 6, 6630, 6630, 22, 22, 30, 30, 798, 798, 290
OFFSET
0,3
COMMENTS
See A140351 for the main part of the documentation.
FORMULA
a(n) = denominator(Sum_{i=0..n} binomial(n,i)*(i+1)*bern(i)). - Vladimir Kruchinin, Oct 05 2016
a(n) = A006955(floor(n/2)). - Georg Fischer, Nov 29 2022
MAPLE
C := proc(n, x) if n = 0 then 1; else add(binomial(n-1, j-1)* bernoulli(j, x), j=1..n) ; expand(%) ; end if ; end proc:
A140219 := proc(n) coeff(C(n, x), x, 1) ; denom(%) ; end proc:
seq(A140219(n), n=1..80) ; # R. J. Mathar, Sep 22 2011
MATHEMATICA
Table[Sum[Binomial[n, k]*(k+1)*BernoulliB[k], {k, 0, n}], {n, 0, 60}] // Denominator (* Vaclav Kotesovec, Oct 05 2016 *)
PROG
(Maxima) makelist(denom(sum((binomial(n, i)*(i+1)*bern(i)), i, 0, n)), n, 0, 20); /* Vladimir Kruchinin, Oct 05 2016 */
(PARI) a(n) = denominator(sum(i=0, n, binomial(n, i)*(i+1)*bernfrac(i))); \\ Michel Marcus, Oct 05 2016
CROSSREFS
Cf. A002427, A006955, A048594, A140351 (numerators).
Sequence in context: A196872 A319865 A350657 * A259225 A300951 A077081
KEYWORD
nonn,frac
AUTHOR
Paul Curtz, Jun 23 2008
STATUS
approved