login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140351 Numerator of the coefficient [x^1] of the Bernoulli twin number polynomial C(n,x). 7
1, 0, -1, -1, -1, 1, 1, -1, -3, 3, 5, -5, -691, 691, 35, -35, -3617, 3617, 43867, -43867, -1222277, 1222277, 854513, -854513, -1181820455, 1181820455, 76977927, -76977927, -23749461029, 23749461029, 8615841276005, -8615841276005, -84802531453387, 84802531453387 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,9

COMMENTS

The Bernoulli twin number polynomials C(n,x) are defined in A129378.

I call the full fraction [x^1]C(n,x) the secondary Bernoulli twin numbers.

LINKS

Table of n, a(n) for n=1..34.

FORMULA

a(n) = numerator(Sum_{i=0..n} binomial(n,i)*(i+1)*bernoulli(i)). - Vladimir Kruchinin, Oct 05 2016

EXAMPLE

The coefficients [x^m]C(n,x) are a table of fractions:

1 ;

-1/2, 1;

-1/3, 0, 1;

-1/6, -1/2, 1/2, 1;

-1/30,-1/2, -1/2, 1, 1;

1/30, -1/6, -1,-1/3, 3/2, 1;

1/42, 1/6, -1/2, -5/3, 0, 2, 1;

-1/42, 1/6, 1/2, -7/6, -5/2, 1/2, 5/2, 1;

-1/30, -1/6, 2/3, 7/6, -7/3, -7/2, 7/6, 3, 1;

1/30, -3/10, -2/3, 2, 7/3, -21/5, -14/3, 2, 7/2, 1;

5/66, 3/10, -3/2, -2, 5, 21/5, -7, -6, 3, 4, 1; ...

This sequence here contains the numerators of the second column.

MAPLE

C := proc(n, x) if n = 0 then 1; else add(binomial(n-1, j-1)* bernoulli(j, x), j=1..n) ; expand(%) ; end if ; end proc:

A140351 := proc(n) coeff(C(n, x), x, 1) ; numer(%) ; end proc: seq(A140351(n), n=1..80) ; # R. J. Mathar, Nov 22 2009

MATHEMATICA

b[n_, x_] := Coefficient[ Series[ t*E^(x*t)/(E^t - 1), {t, 0, n}], t, n]*n!; c[n_, x_] := Sum[ Binomial[n-1, j-1]*b[j, x], {j, 1, n}]; t[n_, m_] := Coefficient[c[n, x], x, m]; Table[t[n, 1] // Numerator, {n, 1, 34} ] (* Jean-Fran├žois Alcover, Mar 04 2013 *)

Table[Sum[Binomial[n, k]*(k+1)*BernoulliB[k], {k, 0, n}], {n, 0, 30}] // Numerator (* Vaclav Kotesovec, Oct 05 2016 *)

PROG

(Maxima) makelist(num(sum((binomial(n, i)*(i+1)*bern(i)), i, 0, n)), n, 0, 20); /* Vladimir Kruchinin, Oct 05 2016 */

(PARI) a(n) = numerator(sum(i=0, n, binomial(n, i)*(i+1)*bernfrac(i))); \\ Michel Marcus, Oct 05 2016

CROSSREFS

Cf. A129378, A129826.

Sequence in context: A087745 A087756 A243305 * A128444 A204250 A131948

Adjacent sequences:  A140348 A140349 A140350 * A140352 A140353 A140354

KEYWORD

frac,sign

AUTHOR

Paul Curtz, May 30 2008, Jun 23 2008

EXTENSIONS

Edited and extended by R. J. Mathar, Nov 22 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 00:38 EST 2016. Contains 278771 sequences.