The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140354 a(n) = binomial(n+9,9)*2^n. 11
 1, 20, 220, 1760, 11440, 64064, 320320, 1464320, 6223360, 24893440, 94595072, 343982080, 1203937280, 4074864640, 13388840960, 42844291072, 133888409600, 409541017600, 1228623052800, 3621204787200, 10501493882880, 30004268236800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of 9D hypercubes in an (n+9)-dimensional hypercube. - Zerinvary Lajos, Jan 29 2010; corrected by Michel Marcus, Jan 10 2015 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..400 Milan Janjic and Boris Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013. Index entries for linear recurrences with constant coefficients, signature (20,-180,960,-3360,8064,-13440,15360,-11520,5120,-1024). FORMULA a(n) = A038207(n+9,9). G.f.: 1/(1-2*x)^10. - Harvey P. Dale, Jul 18 2011 a(0)=1, a(1)=20, a(2)=220, a(3)=1760, a(4)=11440, a(5)=64064, a(6)=320320, a(7)=1464320, a(8)=6223360, a(9)=24893440; for n>9, a(n) = 20*a(n-1) - 180*a(n-2) + 960*a(n-3) - 3360*a(n-4) + 8064*a(n-5) - 13440*a(n-6) + 15360*a(n-7) - 11520*a(n-8) + 5120*a(n-9) - 1024*a(n-10). - Harvey P. Dale, Jul 18 2011 a(n) = 2*a(n-1) + A140325(n-1). - Ruskin Harding, May 13 2013 a(n) = Sum_{i=9..n+9} binomial(i,9)*binomial(n+9,i). - Bruno Berselli, Mar 23 2018 From Amiram Eldar, Jan 07 2022: (Start) Sum_{n>=0} 1/a(n) = 18*log(2) - 1599/140. Sum_{n>=0} (-1)^n/a(n) = 118098*log(3/2) - 6703713/140. (End) EXAMPLE For n=6, a(6) = 1*5005 + 10*3003 + 55*1365 + 220*455 + 715*105 + 2002*15 + 5005*1 = 320320. MAPLE seq(binomial(n+9, 9)*2^n, n=0..23); MATHEMATICA Table[Binomial[n + 9, 9] 2^n, {n, 0, 20}] (* Zerinvary Lajos, Jan 29 2010 *) CoefficientList[Series[1/(1-2x)^10, {x, 0, 30}], x] (* Harvey P. Dale, Jul 18 2011 *) PROG (Sage) [lucas_number2(n, 2, 0)*binomial(n, 9)/512 for n in range(9, 31)] # Zerinvary Lajos, Mar 10 2009 (PARI) a(n)=binomial(n+9, 9)<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 12:06 EDT 2024. Contains 373331 sequences. (Running on oeis4.)