OFFSET
1,3
COMMENTS
LINKS
Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
Eric Weisstein's World of Mathematics, Stirling Number of the First Kind
FORMULA
T(n, k) = k*T(n-1, k-1) - (n-1)*T(n-1, k) if n>=k>=1, T(n, 0) = 0 and T(1, 1)=1, else 0.
E.g.f. k-th column: log(1+x)^k, k>=1.
From Peter Bala, Nov 25 2011: (Start):
E.g.f.: 1/(1-t*log(1+x)) = 1 + t*x + (-t+2*t^2)*x^2/2! + ....
The row polynomials are given by D^n(1/(1-x*t)) evaluated at x = 0, where D is the operator exp(-x)*d/dx.
(End)
EXAMPLE
Triangle begins
1;
-1, 2;
2, -6, 6;
-6, 22, -36, 24;
24, -100, 210, -240, 120; ...
The 2nd derivative of 1/log(x) is -2/x^3*log(x)^2 - 6/x^3*log(x)^3 - 6/x^3*log(x)^4.
MAPLE
with(combinat): A048594 := (n, k)->k!*stirling1(n, k);
MATHEMATICA
Flatten[Table[k!*StirlingS1[n, k], {n, 10}, {k, n}]] (* Harvey P. Dale, Aug 28 2011 *)
Join @@ CoefficientRules[ -Table[ D[ 1/Log[z], {z, n}], {n, 9}] /. Log[z] -> -Log[z], {1/z, 1/Log[z]}, "NegativeLexicographic"][[All, All, 2]] (* Oleg Marichev (oleg(AT)wolfram.com) and Maxim Rytin (m.r(AT)inbox.ru); submitted by Robert G. Wilson v, Aug 29 2011 *)
PROG
(PARI) {T(n, k)= if(k<1 || k>n, 0, stirling(n, k)* k!)} /* Michael Somos Apr 11 2007 */
(Haskell)
a048594 n k = a048594_tabl !! (n-1) !! (k-1)
a048594_row n = a048594_tabl !! (n-1)
a048594_tabl = map snd $ iterate f (1, [1]) where
f (i, xs) = (i + 1, zipWith (-) (zipWith (*) [1..] ([0] ++ xs))
(map (* i) (xs ++ [0])))
-- Reinhard Zumkeller, Mar 02 2014
(Magma) /* As triangle: */ [[Factorial(k)*StirlingFirst(n, k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Dec 15 2015
(SageMath)
def A048594(n, k): return (-1)^(n-k)*factorial(k)*stirling_number1(n, k)
flatten([[A048594(n, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Oct 24 2023
CROSSREFS
AUTHOR
Oleg Marichev (oleg(AT)wolfram.com)
STATUS
approved