login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245079
Number of bipolar Boolean functions, that is, Boolean functions that are monotone or antimonotone in each argument.
7
2, 4, 14, 104, 2170, 230540, 499596550, 309075799150640, 14369391928071394429416818, 146629927766168786368451678290041110762316052
OFFSET
0,1
COMMENTS
A Boolean function is bipolar if and only if for each argument index i, the function is one of: (1) monotone in argument i, (2) antimonotone in argument i, (3) both monotone and antimonotone in argument i.
These functions are variously called "unate functions" or "locally monotone functions". - Aniruddha Biswas, May 11 2024
REFERENCES
Richard Dedekind, Über Zerlegungen von Zahlen durch ihre grössten gemeinsamen Theiler, in Fest-Schrift der Herzoglichen Technischen Hochschule Carolo-Wilhelmina, pages 1-40. Vieweg+Teubner Verlag (1897).
LINKS
Ringo Baumann and Hannes Strass, On the Number of Bipolar Boolean Functions, Journal of Logic and Computation, exx025. Also available as a Preprint.
A. Biswas and P. Sarkar, Counting unate and balanced monotone Boolean functions, arXiv:2304.14069 [math.CO], 2023.
G. Brewka and S. Woltran, Abstract dialectical frameworks, Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning. Pages 102--111. IJCAI/AAAI 2010.
FORMULA
a(n) = Sum_{i=1..n}(2^i * C(n,i) * A006126(i)) + 2.
EXAMPLE
There are 2 bipolar Boolean functions in 0 arguments, the constants true and false.
All 4 Boolean functions in one argument are bipolar.
For 2 arguments, only equivalence and exclusive-or are not bipolar, 16-2=14.
CROSSREFS
Cf. A006126.
Sequence in context: A005737 A219767 A000609 * A167008 A376697 A329234
KEYWORD
nonn,hard,more
AUTHOR
Hannes Strass, Jul 11 2014
EXTENSIONS
a(7)-a(8) corrected by and a(9) from Aniruddha Biswas, May 11 2024
STATUS
approved