OFFSET
0,1
COMMENTS
A Boolean function is bipolar if and only if for each argument index i, the function is one of: (1) monotone in argument i, (2) antimonotone in argument i, (3) both monotone and antimonotone in argument i.
These functions are variously called "unate functions" or "locally monotone functions". - Aniruddha Biswas, May 11 2024
REFERENCES
Richard Dedekind, Über Zerlegungen von Zahlen durch ihre grössten gemeinsamen Theiler, in Fest-Schrift der Herzoglichen Technischen Hochschule Carolo-Wilhelmina, pages 1-40. Vieweg+Teubner Verlag (1897).
LINKS
Ringo Baumann and Hannes Strass, On the Number of Bipolar Boolean Functions, Journal of Logic and Computation, exx025. Also available as a Preprint.
A. Biswas and P. Sarkar, Counting unate and balanced monotone Boolean functions, arXiv:2304.14069 [math.CO], 2023.
G. Brewka and S. Woltran, Abstract dialectical frameworks, Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning. Pages 102--111. IJCAI/AAAI 2010.
FORMULA
a(n) = Sum_{i=1..n}(2^i * C(n,i) * A006126(i)) + 2.
EXAMPLE
There are 2 bipolar Boolean functions in 0 arguments, the constants true and false.
All 4 Boolean functions in one argument are bipolar.
For 2 arguments, only equivalence and exclusive-or are not bipolar, 16-2=14.
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Hannes Strass, Jul 11 2014
EXTENSIONS
a(7)-a(8) corrected by and a(9) from Aniruddha Biswas, May 11 2024
STATUS
approved