The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245079 Number of bipolar Boolean functions, that is, Boolean functions that are monotone or antimonotone in each argument. 0
 2, 4, 14, 104, 2170, 230540, 499596550, 30907579915064, 5483950159845307762 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS A Boolean function is bipolar if and only if for each argument index i, the function is one of: (1) monotone in argument i, (2) antimonotone in argument i, (3) both monotone and antimonotone in argument i. REFERENCES Richard Dedekind,Uber Zerlegungen von Zahlen durch ihre grossten gemeinsamen Theiler, in Fest-Schrift der Herzoglichen Technischen Hochschule Carolo-Wilhelmina, pages 1-40. Vieweg+Teubner Verlag (1897). LINKS Ringo Baumann and Hannes Strass, On the Number of Bipolar Boolean Functions, Journal of Logic and Computation, exx025. Also available as a Preprint. G. Brewka and S. Woltran, Abstract dialectical frameworks, Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning. Pages 102--111. IJCAI/AAAI 2010. FORMULA a(n) = Sum_{i=1..n}(2^i * C(n,i) * A006126(i)) + 2. EXAMPLE There are 2 bipolar Boolean functions in 0 arguments, the constants true and false. All 4 Boolean functions in one argument are bipolar. For 2 arguments, only equivalence and exclusive-or are not bipolar, 16-2=14. CROSSREFS Cf. A006126. Sequence in context: A005737 A219767 A000609 * A167008 A329234 A238638 Adjacent sequences:  A245076 A245077 A245078 * A245080 A245081 A245082 KEYWORD nonn,hard,more AUTHOR Hannes Strass, Jul 11 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 00:40 EST 2020. Contains 331030 sequences. (Running on oeis4.)