login
A245081
Decimal expansion of the position of the local maximum of the Barnes G function in the interval [0,2].
3
1, 3, 9, 1, 4, 7, 0, 3, 8, 1, 0, 4, 1, 0, 9, 5, 1, 7, 3, 4, 5, 1, 0, 4, 8, 8, 5, 8, 4, 7, 4, 3, 2, 1, 5, 0, 0, 3, 0, 6, 7, 3, 5, 0, 3, 3, 9, 7, 7, 0, 0, 2, 2, 8, 1, 7, 7, 5, 9, 9, 6, 7, 7, 4, 2, 0, 5, 3, 1, 9, 4, 3, 4, 4, 7, 2, 4, 9, 9, 2, 2, 5, 1, 3, 4, 3, 1, 4, 6, 4, 9, 7, 8, 7, 0, 4, 9, 1, 7, 0, 3, 5, 4, 8, 0
OFFSET
1,2
LINKS
Eric Weisstein's MathWorld, Barnes G-Function
FORMULA
3 - 2*x + log(2*Pi) + 2*(x-1)*psi(x-1) = 0, with 0<x<2, psi being the digamma function.
EXAMPLE
1.39147038104109517345104885847432150030673503397700228177599677420531...
MATHEMATICA
digits = 105; x1 = x /. FindRoot[3 - 2*x + Log[2*Pi] + 2*(x-1)*PolyGamma[x-1] == 0, {x, 3/2}, WorkingPrecision -> digits+10]; RealDigits[x1, 10, digits] // First
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved