login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254348
Decimal expansion of gamma_1(3/4), the first generalized Stieltjes constant at 3/4 (negated).
10
3, 9, 1, 2, 9, 8, 9, 0, 2, 4, 0, 4, 5, 4, 9, 7, 7, 4, 2, 3, 9, 8, 7, 4, 1, 9, 2, 1, 8, 9, 2, 9, 6, 3, 7, 1, 4, 5, 0, 3, 8, 9, 7, 3, 1, 9, 6, 7, 1, 4, 0, 7, 6, 6, 2, 7, 7, 3, 0, 7, 1, 0, 8, 6, 9, 7, 1, 7, 9, 3, 9, 5, 0, 6, 0, 4, 7, 1, 3, 3, 2, 6, 4, 3, 2, 7, 8, 2, 7, 5, 6, 2, 2, 1, 9, 7, 5, 8, 8, 1, 4, 7, 8
OFFSET
0,1
LINKS
Iaroslav V. Blagouchine, A theorem ... (same title), Journal of Number Theory Volume 148, March 2015, Pages 537-592.
Iaroslav V. Blagouchine, Rediscovery of Malmsten’s integrals, their evaluation by contour integration methods and some related results, The Ramanujan Journal October 2014, Volume 35, Issue 1, pp 21-110.
Eric Weisstein's World of Mathematics, Hurwitz Zeta Function.
Eric Weisstein's World of Mathematics, Stieltjes Constants.
FORMULA
Equals integral_[0..infinity] (4*(-6*arctan(4*x/3) + 4*x*log(9/16 + x^2)))/((-1 + exp(2*Pi*x))*(9 + 16*x^2)) dx -(2/3 + (1/2)*log(4/3))*log(4/3).
EXAMPLE
-0.39129890240454977423987419218929637145038973196714...
MAPLE
evalf(int((4*(-6*arctan(4*x*(1/3))+4*x*log(9/16+x^2)))/((-1+exp(2*Pi*x))*(16*x^2+9)), x = 0..infinity) - (2/3+(1/2)*log(4/3))*log(4/3), 120); # Vaclav Kotesovec, Jan 29 2015
MATHEMATICA
gamma1[3/4] = (1/2)*(-Log[4]^2 + EulerGamma*(Pi - 2*Log[8]) - 2*Log[4]*Log[2*Pi] + Pi*Log[(8*Pi*Gamma[3/4]^2)/Gamma[1/4]^2] - 2*(Log[2*Pi]^2 - Log[Pi]*Log[8*Pi] - StieltjesGamma[1] + Derivative[2, 0][Zeta][0, 1/2])) // Re; RealDigits[gamma1[3/4], 10, 103] // First
(* Or, from Mma version 7 up: *) RealDigits[StieltjesGamma[1, 3/4], 10, 103] // First
CROSSREFS
Cf. A001620 (gamma), A082633 (gamma_1), A254327 (gamma_1(1/2)), A254331 (gamma_1(1/3)), A254345 (gamma_1(2/3)), A254347 (gamma_1(1/4)), A254349 (gamma_1(1/6)), A254350 (gamma_1(5/6)), A251866 (gamma_1(1/5)), A255188 (gamma_1(1/8)), A255189 (gamma_1(1/12)).
Sequence in context: A016673 A304022 A103556 * A168399 A290375 A245081
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved