OFFSET
2,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 2..5002
Iaroslav V. Blagouchine, A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations, Journal of Number Theory (Elsevier), Volume 148, pages 537-592, March 2015 (arXiv preprint).
Eric Weisstein's MathWorld, Hurwitz Zeta Function.
Eric Weisstein's MathWorld, Stieltjes Constants.
Wikipedia, Stieltjes constants
EXAMPLE
-29.842878232041331303351020260759263239892044001861...
MATHEMATICA
gamma1[1/12] = StieltjesGamma[1] + Sqrt[3]*(Derivative[2, 0][Zeta][0, 1/12] + Derivative[2, 0][Zeta][0, 11/12]) + 4*Pi*LogGamma[1/4] + 3*Pi*Sqrt[3]*LogGamma[1/3] - (((2 + Sqrt[3])/2)*Pi + (3/2)*Log[3] - Sqrt[3]*(1 - Sqrt[3])*Log[2] + 2*Sqrt[3]*Log[1 + Sqrt[3]])*EulerGamma - 2*Sqrt[3]*(3*Log[2] + Log[3] + Log[Pi])* Log[1 + Sqrt[3]] - ((7 - 6*Sqrt[3])/2)*Log[2]^2 - (3/4)*Log[3]^2 + 3*Sqrt[3]*((1 - Sqrt[3])/2)*Log[3]*Log[2] + Sqrt[3]*Log[2]*Log[Pi] - Pi*((17 + 8*Sqrt[3])/(2*Sqrt[3]))*Log[2] + ((Pi*(1 - Sqrt[3])*Sqrt[3])/4)*Log[3] - Pi*Sqrt[3]*(2 + Sqrt[3])*Log[Pi] // Re; RealDigits[gamma1[1/12], 10, 104] // First
(* or, from version 7 up: *) RealDigits[StieltjesGamma[1, 1/12], 10, 104] // First
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Feb 16 2015
STATUS
approved