login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092971
Row 6 of array in A288580.
7
1, 1, 2, -9, -8, -5, -36, -35, -64, 729, 640, 385, 5184, 5005, 8960, -164025, -143360, -85085, -1679616, -1616615, -2867200, 72335025, 63078400, 37182145, 967458816, 929553625, 1640038400, -52732233225, -45921075200, -26957055125, -870712934400, -835668708875, -1469474406400, 57425401982025
OFFSET
0,3
REFERENCES
F. Smarandache, Back and Forth Factorials, Arizona State Univ., Special Collections, 1972.
LINKS
J. Dezert, ed., Smarandacheials (1), Mathematics Magazine for Grades 1-12, No. 4, 2004.
J. Dezert, ed., Smarandacheials (2), Mathematics Magazine for Grades 1-12, No. 4, 2004.
FORMULA
a(n, k) = !n!_k = Prod_{i=0, 1, 2, .., floor(2n/k)}_{0<|n-i*k|<=n} (n-i*k) = n(n-k)(n-2k)(n-3k)... . k=6.
MAPLE
T:=proc(n, k) local i, p;
p:=1;
for i from 0 to floor(2*n/k) do
if n-k*i <> 0 then p:=p*(n-k*i) fi; od:
p;
end;
r:=k->[seq(T(n, k), n=0..60)]; r(6); # N. J. A. Sloane, Jul 03 2017
PROG
(PARI) a(n, k)=prod(j=0, (2*n)\k, if(n-k*j==0, 1, n-k*j))
KEYWORD
sign
AUTHOR
Paul D. Hanna and Amarnath Murthy, Mar 27 2004
EXTENSIONS
Entry revised by N. J. A. Sloane, Jul 03 2017
STATUS
approved