|
|
A092399
|
|
Row 5 of array in A288580.
|
|
9
|
|
|
1, 1, 2, -6, -4, -25, -24, -42, 336, 216, 2500, 2376, 4032, -52416, -33264, -562500, -532224, -891072, 16039296, 10112256, 225000000, 212357376, 352864512, -8115883776, -5096577024, -140625000000, -132511002624, -219128861952, 6135608134656, 3842819076096, 126562500000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
REFERENCES
|
F. Smarandache, Back and Forth Factorials, Arizona State Univ., Special Collections, 1972.
|
|
LINKS
|
Table of n, a(n) for n=0..30.
J. Dezert, ed., Smarandacheials (1), Mathematics Magazine for Grades 1-12, No. 4, 2004.
J. Dezert, ed., Smarandacheials (2), Mathematics Magazine for Grades 1-12, No. 4, 2004.
|
|
FORMULA
|
a(n) = !n!_5 = Prod_{i=0, 1, 2, ... .}_{0<|n-5i|<=n}(n-5i) = n(n-5)(n-10)....
|
|
EXAMPLE
|
!11!_5 = 11(11-5)(11-10)(11-15)(11-20) = 11(6)(1)(-4)(-9) = 2376.
|
|
MAPLE
|
T:=proc(n, k) local i, p;
p:=1;
for i from 0 to floor(2*n/k) do
if n-k*i <> 0 then p:=p*(n-k*i) fi; od:
p;
end;
r:=k->[seq(T(n, k), n=0..60)]; r(5); # N. J. A. Sloane, Jul 03 2017
|
|
CROSSREFS
|
Cf. A288580.
Sequence in context: A106831 A347188 A038212 * A039656 A263326 A226532
Adjacent sequences: A092396 A092397 A092398 * A092400 A092401 A092402
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
J. Dezert (Jean.Dezert(AT)onera.fr), Mar 21 2004
|
|
EXTENSIONS
|
Entry revised by N. J. A. Sloane, Jul 03 2017
|
|
STATUS
|
approved
|
|
|
|