OFFSET
2,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 2..5002
Iaroslav V. Blagouchine, A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments, arXiv:1401.3724 [math.NT], 2015.
Iaroslav V. Blagouchine, A theorem ... (same title), Journal of Number Theory Volume 148, March 2015, Pages 537-592.
Iaroslav V. Blagouchine, Rediscovery of Malmsten’s integrals, their evaluation by contour integration methods and some related results, The Ramanujan Journal October 2014, Volume 35, Issue 1, pp 21-110.
Iaroslav V. Blagouchine, Rediscovery of Malmsten’s integrals: Full PDF text.
Eric Weisstein's World of Mathematics, Hurwitz Zeta Function;
Eric Weisstein's World of Mathematics, Stieltjes Constants.
Wikipedia, Stieltjes constants
FORMULA
Equals integral_[0..infinity] (6*(-2*arctan(6*x) + 6*x*log(1/36 + x^2)))/((-1 + exp(2*Pi*x))*(1 + 36*x^2)) dx - (3 + log(6)/2)*log(6).
EXAMPLE
-10.742582529547892258941196776243668301630426163606753795...
MAPLE
evalf(int((6*(-2*arctan(6*x) + 6*x*log(1/36 + x^2)))/((-1 + exp(2*Pi*x))*(1 + 36*x^2)), x = 0..infinity) - (3 + log(6)/2)*log(6), 120); # Vaclav Kotesovec, Jan 29 2015
MATHEMATICA
gamma1[1/6] = (1/2)*((-Log[6])*Log[24] - EulerGamma*Log[432] - 2*Log[2]*Log[2*Pi^2] + Log[(2*Pi)/Sqrt[3]]*Log[144*Pi^2] + Log[Pi]*Log[4/Gamma[1/6]^2] - 2*Log[12]*Log[Gamma[1/6]] - 2*Log[12*Pi]*Log[Gamma[5/6]] - Sqrt[3]*Pi*(EulerGamma + Log[(12*2^(2/3)*Pi^(3/2)*Gamma[5/6])/Gamma[1/6]^2]) + 2*StieltjesGamma[1] + Derivative[2, 0][Zeta][0, 1/6] - Derivative[2, 0][Zeta][0, 1/3] - 2*Derivative[2, 0][Zeta][0, 1/2] - Derivative[2, 0][Zeta][0, 2/3] + Derivative[2, 0][Zeta][0, 5/6]) // Re; RealDigits[gamma1[1/6], 10, 102] // First
(* Or, from Mma version 7 up: *) RealDigits[StieltjesGamma[1, 1/6], 10, 102] // First
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Jan 29 2015
STATUS
approved