login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254327
Decimal expansion of gamma_1(1/2), the first generalized Stieltjes constant at 1/2 (negated).
10
1, 3, 5, 3, 4, 5, 9, 6, 8, 0, 8, 0, 4, 9, 4, 1, 5, 1, 7, 7, 0, 8, 6, 8, 7, 1, 6, 9, 1, 7, 8, 0, 6, 4, 4, 0, 3, 5, 9, 1, 2, 8, 6, 2, 8, 9, 0, 3, 6, 3, 4, 6, 6, 1, 1, 6, 7, 4, 3, 8, 3, 8, 8, 6, 2, 6, 8, 0, 4, 6, 2, 0, 2, 4, 5, 9, 2, 3, 8, 4, 3, 8, 5, 9, 7, 0, 9, 3, 5, 2, 3, 1, 9, 6, 7, 9, 0, 3, 7, 3, 0, 5, 8, 7, 7
OFFSET
1,2
LINKS
Iaroslav V. Blagouchine, A theorem ... (same title), Journal of Number Theory Volume 148, March 2015, pages 537-592.
Iaroslav V. Blagouchine, Rediscovery of Malmsten’s integrals, their evaluation by contour integration methods and some related results, The Ramanujan Journal October 2014, Volume 35, Issue 1, pp. 21-110.
Eric Weisstein's MathWorld, Hurwitz Zeta Function.
Eric Weisstein's MathWorld, Stieltjes Constants.
FORMULA
Equals Gamma(1) - log(2)^2 - 2*gamma*log(2).
Equals Integral_{0..oo} (coth(Pi*x)-1) * (-2*arctan(2*x) + 2*x*log(1/4+x^2)) / (1+4*x^2) dx - log(2) - log(2)^2/2.
EXAMPLE
-1.3534596808049415177086871691780644035912862890363466...
MAPLE
evalf(int((coth(Pi*x)-1)*(-2*arctan(2*x)+2*x*log(1/4+x^2))/(1+4*x^2), x = 0..infinity) - log(2) - (1/2)*log(2)^2, 120); # Vaclav Kotesovec, Jan 28 2015
evalf(gamma(1) - log(2)^2 - 2*gamma*log(2), 120); # Vaclav Kotesovec, Jan 29 2015 (faster)
MATHEMATICA
gamma1[1/2] = StieltjesGamma[1] - Log[2]^2 - 2*EulerGamma*Log[2]; RealDigits[ gamma1[1/2], 10, 105] // First (* = StieltjesGamma[1, 1/2] expanded *)
CROSSREFS
Cf. A001620 (gamma), A082633 (gamma_1), A254331 (gamma_1(1/3)), A254345 (gamma_1(2/3)), A254347 (gamma_1(1/4)), A254348 (gamma_1(3/4)), A254349 (gamma_1(1/6)), A254350 (gamma_1(5/6)), A251866 (gamma_1(1/5)), A255188 (gamma_1(1/8)), A255189 (gamma_1(1/12)).
Sequence in context: A077973 A374624 A210606 * A175999 A236965 A259684
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved