OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Iaroslav V. Blagouchine, A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments, arXiv:1401.3724 [math.NT], 2015.
Iaroslav V. Blagouchine, A theorem ... (same title), Journal of Number Theory Volume 148, March 2015, pages 537-592.
Iaroslav V. Blagouchine, Rediscovery of Malmsten’s integrals, their evaluation by contour integration methods and some related results, The Ramanujan Journal October 2014, Volume 35, Issue 1, pp. 21-110.
Iaroslav V. Blagouchine, Rediscovery of Malmsten’s integrals: Full PDF text.
Eric Weisstein's MathWorld, Hurwitz Zeta Function.
Eric Weisstein's MathWorld, Stieltjes Constants.
Wikipedia, Stieltjes constants.
FORMULA
Equals Gamma(1) - log(2)^2 - 2*gamma*log(2).
Equals Integral_{0..oo} (coth(Pi*x)-1) * (-2*arctan(2*x) + 2*x*log(1/4+x^2)) / (1+4*x^2) dx - log(2) - log(2)^2/2.
EXAMPLE
-1.3534596808049415177086871691780644035912862890363466...
MAPLE
evalf(int((coth(Pi*x)-1)*(-2*arctan(2*x)+2*x*log(1/4+x^2))/(1+4*x^2), x = 0..infinity) - log(2) - (1/2)*log(2)^2, 120); # Vaclav Kotesovec, Jan 28 2015
evalf(gamma(1) - log(2)^2 - 2*gamma*log(2), 120); # Vaclav Kotesovec, Jan 29 2015 (faster)
MATHEMATICA
gamma1[1/2] = StieltjesGamma[1] - Log[2]^2 - 2*EulerGamma*Log[2]; RealDigits[ gamma1[1/2], 10, 105] // First (* = StieltjesGamma[1, 1/2] expanded *)
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Jan 28 2015
STATUS
approved