login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254330
Define a(1)=19 and a(2)=29. Then, if a(n-2) and a(n-1) have the same parity, a(n) = (a(n-2) + a(n-1))/2; if not, a(n) = a(n-2)/2 + a(n-1) for a(n-2) even or a(n) = a(n-2) + a(n-1)/2 for a(n-1) even.
3
19, 29, 24, 41, 53, 47, 50, 72, 61, 97, 79, 88, 123, 167, 145, 156, 223, 301, 262, 432, 347, 563, 455, 509, 482, 750, 616, 683, 991, 837, 914, 1294, 1104, 1199, 1751, 1475, 1613, 1544, 2385, 3157, 2771, 2964, 4253, 5735, 4994, 8232, 6613, 10729, 8671, 9700
OFFSET
1,1
COMMENTS
If we start with a(1)=19 and a(2)=19, then a(n)=19 for every n.
As N increases, Sum_{n=1..N} 1/a(n) converges quickly to
0.3461955119388269653531110943666276404231513450...
More generally, if one starts with a(1) = a(2), then a(n) = a(1) for every n.
This sequence starts with the two smallest prime numbers that are not present in A254498; A254498 starts with the first two prime numbers 2,3.
EXAMPLE
As 19 and 29 are both odd, a(3) = (19 + 29)/2 = 24.
As 29 is odd and 24 is even, a(4) = 29 + 24/2 = 41.
MATHEMATICA
a[n_] := a[n] = If[ Mod[ a[n-1], 2] == Mod[ a[n-2], 2], (a[n-1] + a[n-2])/2, If[ OddQ@ a[n-1], a[n-1] + a[n-2]/2, a[n-1]/2 + a[n-2]]]; a[1] = 3; a[2] = 5; Array[a, 70] (* Robert G. Wilson v, Mar 11 2015 *)
nxt[{a_, b_}]:={b, Which[IntegerQ[(a+b)/2], (a+b)/2, EvenQ[a], a/2+b, True, a+b/2]}; NestList[nxt, {19, 29}, 50][[All, 1]] (* Harvey P. Dale, Mar 09 2019 *)
PROG
(PFGW & SCRIPT)
SCRIPT
DIM i, 19
DIM j, 29
DIM k
DIM n, 2
OPENFILEOUT myf, seq.txt
WRITE myf, i
WRITE myf, j
LABEL loop1
SET n, n+1
IF n>1000 THEN END
IF i%2==0 && j%2==0 THEN SET k, (i+j)/2
IF i%2==1 && j%2==1 THEN SET k, (i+j)/2
IF i%2==0 && j%2==1 THEN SET k, i/2+j
IF i%2==1 && j%2==0 THEN SET k, i+j/2
WRITE myf, k
SET i, j
SET j, k
GOTO loop1
(PARI) a(n, a=19, b=29)={n||return(a); for(i=2, n, b=if((b-a)%2, if(a%2, a+(a=b)\2, a\2+a=b), (a+a=b)\2)); b} \\ M. F. Hasler, Feb 10 2015
CROSSREFS
Cf. A254498.
Sequence in context: A121458 A373859 A268488 * A052260 A067833 A135170
KEYWORD
nonn
AUTHOR
Pierre CAMI, Jan 28 2015
STATUS
approved