login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254498
Define a(1)=2 and a(2)=3. Then, if a(n-2) and a(n-1) have the same parity, a(n)=(a(n-2)+a(n-1))/2; if not, a(n)=a(n-2)/2+a(n-1) for a(n-2) even or a(n)=a(n-2)+a(n-1)/2 for a(n-1) even.
3
2, 3, 4, 5, 7, 6, 10, 8, 9, 13, 11, 12, 17, 23, 20, 33, 43, 38, 62, 50, 56, 53, 81, 67, 74, 104, 89, 141, 115, 128, 179, 243, 211, 227, 219, 223, 221, 222, 332, 277, 443, 360, 623, 803, 713, 758, 1092, 925, 1471, 1198, 2070, 1634, 1852, 1743, 2669, 2206, 3772
OFFSET
1,1
COMMENTS
If we start with a(1)=a(2)=2, then a(n)=2 for every n.
As N increases, sum_{n=1..N} 1/a(n) converges quickly to
2.6332482094949767034995557279162460374965915768...
More generally, if one starts with a(1) = a(2), then a(n) = a(1) for every n.
EXAMPLE
As 2 is even and 3 is odd, a(4) = 2/2 + 3 = 4.
As 3 is odd and 4 is even, a(5) = 3 + 4/2 = 5.
MATHEMATICA
a[n_] := a[n] = If[ Mod[ a[n - 1], 2] == Mod[ a[n - 2], 2], (a[n - 1] + a[n - 2])/2, If[ OddQ@ a[n - 1], a[n - 1] + a[n - 2]/2, a[n - 1]/2 + a[n - 2]]]; a[1] = 2; a[2] = 3; a = Array[a, 69] (* Robert G. Wilson v, Mar 11 2015 *)
PROG
(PFGW & SCRIPT)
SCRIPT
DIM i, 0
DIM j, 4
DIM k
DIM n, 1
OPENFILEOUT myf, seq.txt
WRITE myf, i
WRITE myf, j
LABEL loop1
SET n, n+1
IF n>1000 THEN END
IF i%2==0 && j%2==0 THEN SET k, (i+j)/2
IF i%2==1 && j%2==1 THEN SET k, (i+j)/2
IF i%2==0 && j%2==1 THEN SET k, i/2+j
IF i%2==1 && j%2==0 THEN SET k, i+j/2
WRITE myf, k
SET i, j
SET j, k
GOTO loop1
(PARI) a(n, a=0, b=4)={n||return(a); for(i=2, n, b=if((b-a)%2, if(a%2, a+(a=b)\2, a\2+a=b), (a+a=b)\2)); b} \\ M. F. Hasler, Feb 10 2015
CROSSREFS
Cf. A254330.
Sequence in context: A256231 A288870 A283194 * A185969 A369281 A266637
KEYWORD
nonn
AUTHOR
Pierre CAMI, Jan 31 2015
STATUS
approved