|
|
A254501
|
|
a(n) is the smallest nonnegative integer such that a(n)! contains a string of exactly n consecutive 6's.
|
|
10
|
|
|
0, 3, 20, 38, 35, 213, 1122, 3415, 10214, 32430, 145197, 351679, 666779, 813843, 3765934
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..14.
|
|
EXAMPLE
|
a(1) = 3 since 3! equals 6 and contains '6'.
a(2) = 20 since 20! contains '66' and 20 is the smallest integer for which the condition is met.
|
|
MATHEMATICA
|
A254451[n_] := Module[{m = 0},
If[n == 0, While[MemberQ[IntegerDigits[m!], 6], m++]; m,
t = Table[6, n];
While[! MemberQ[Split[IntegerDigits[m!]], t], m++]; m]];
Table[A254451[n], {n, 0, 7}] (* Robert Price, Mar 21 2019 *)
|
|
CROSSREFS
|
Cf. A254042, A254447, A254448, A254449, A254500, A254502, A254716, A254717.
Sequence in context: A075358 A352810 A002461 * A031106 A337478 A248818
Adjacent sequences: A254498 A254499 A254500 * A254502 A254503 A254504
|
|
KEYWORD
|
nonn,base,more
|
|
AUTHOR
|
Martin Y. Champel, Jan 31 2015
|
|
EXTENSIONS
|
a(10), a(11) from Jon E. Schoenfield, Feb 21 2015, Feb 23 2015
a(0) prepended by Jon E. Schoenfield, Mar 01 2015
a(12), a(13) from Jon E. Schoenfield, Mar 07 2015, Mar 10 2015
a(14) from Bert Dobbelaere, Oct 29 2018
|
|
STATUS
|
approved
|
|
|
|