OFFSET
1,2
LINKS
Álvar Ibeas, Table of n, a(n) for n = 1..10000
FORMULA
If n is squarefree, a(n) = n; if n is powerful, a(n) = phi(n).
Multiplicative with a(p) = p; a(p^e) = phi(p^e), for e > 1.
Dirichlet g.f.: zeta(s-1) / zeta(2s-1).
a(n) = Sum_{d|n, gcd(n/d, d) = 1} mu(d)^2 * phi(n/d). - Daniel Suteu, Jun 27 2018
Sum_{k=1..n} a(k) ~ n^2 / (2*zeta(3)). - Vaclav Kotesovec, Jan 11 2019
MATHEMATICA
Table[DivisorSum[n, MoebiusMu[#]^2*EulerPhi[n/#] &, CoprimeQ[n/#, #] &], {n, 70}] (* Michael De Vlieger, Jun 27 2018 *)
f[p_, e_] := (p - 1)*p^(e - 1); f[p_, 1] := p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
PROG
(PARI) a(n) = {my(f = factor(n)); for (i=1, #f~, if ((e=f[i, 2]) > 1, f[i, 1] = eulerphi(f[i, 1]^e); f[i, 2] = 1); ); factorback(f); } \\ Michel Marcus, Feb 06 2015
(PARI) a(n) = sumdiv(n, d, if(gcd(n/d, d) == 1, moebius(d)^2 * eulerphi(n/d))); \\ Daniel Suteu, Jun 27 2018
CROSSREFS
KEYWORD
mult,nonn,easy
AUTHOR
Álvar Ibeas, Jan 31 2015
STATUS
approved