|
|
A254502
|
|
a(n) is the smallest nonnegative integer such that a(n)! contains a string of exactly n consecutive 7's.
|
|
10
|
|
|
0, 6, 31, 48, 22, 599, 1102, 5280, 4667, 1753, 48861, 150336, 223254, 644487, 7016773, 9588848
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..15.
|
|
EXAMPLE
|
a(1) = 6 since 6! equals 720, which contains '7'.
|
|
MATHEMATICA
|
A254452[n_] := Module[{m = 0},
If[n == 0, While[MemberQ[IntegerDigits[m!], 7], m++]; m,
t = Table[7, n];
While[! MemberQ[Split[IntegerDigits[m!]], t], m++]; m]];
Table[A254452[n], {n, 0, 14}] (* Robert Price, Mar 21 2019 *)
|
|
CROSSREFS
|
Cf. A254042, A254447, A254448, A254449, A254500, A254501, A254716, A254717.
Sequence in context: A043058 A155097 A306331 * A025524 A042841 A215730
Adjacent sequences: A254499 A254500 A254501 * A254503 A254504 A254505
|
|
KEYWORD
|
nonn,base,more
|
|
AUTHOR
|
Martin Y. Champel, Jan 31 2015
|
|
EXTENSIONS
|
a(11), a(12) from Jon E. Schoenfield, Feb 21 2015
a(0) prepended by Jon E. Schoenfield, Mar 01 2015
a(13) from Jon E. Schoenfield, Mar 06 2015
a(14)-a(15) from Bert Dobbelaere, Oct 29 2018
|
|
STATUS
|
approved
|
|
|
|