OFFSET
1,2
COMMENTS
The sequence of the number of those divisors is A072911.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
László Tóth, On certain arithmetic functions involving exponential divisors, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 24 (2004), pp. 285-294; arXiv preprint, arXiv:math/0610274v2 [math.NT], 2006-2009.
FORMULA
Multiplicative with a(p^e) = Sum_{i=1..e, gcd(i,e)=1} p^i.
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(x^(3/2) * exp(A * log(n)^(3/5) * log(log(n))^(-1/5)), where A is a constant and c = Product_{p prime} (1 + Sum_{k>=2} (a(p^k) - p*a(p^(k-1)))/p^(2*k)) = 0.77693509739103041486... (Tóth, 2004). - Amiram Eldar, Feb 13 2024
MATHEMATICA
fun[p_, e_] := Sum[If[GCD[i, e]==1, p^i, 0], {i, 1, e}]; a[1] = 1; a[n_] := Times @@ (fun @@@ FactorInteger[n]); Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, sum(k = 1, f[i, 2], (gcd(k, f[i, 2]) == 1) * f[i, 1]^k)); } \\ Amiram Eldar, Feb 13 2024
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Amiram Eldar, May 10 2019
STATUS
approved