login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057521 Powerful (1) part of n: if n = Product_i (pi^ei) then a(n) = Product_{i : ei > 1} (pi^ei); if n=b*c^2*d^3 then a(n)=c^2*d^3 when b is minimized. 63
1, 1, 1, 4, 1, 1, 1, 8, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 8, 25, 1, 27, 4, 1, 1, 1, 32, 1, 1, 1, 36, 1, 1, 1, 8, 1, 1, 1, 4, 9, 1, 1, 16, 49, 25, 1, 4, 1, 27, 1, 8, 1, 1, 1, 4, 1, 1, 9, 64, 1, 1, 1, 4, 1, 1, 1, 72, 1, 1, 25, 4, 1, 1, 1, 16, 81, 1, 1, 4, 1, 1, 1, 8, 1, 9, 1, 4, 1, 1, 1, 32, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..16383 (first 1000 terms from T. D. Noe)
Victor Ufnarovski and Bo Åhlander, How to Differentiate a Number, J. Integer Seq., Vol. 6 (2003), Article 03.3.4.
FORMULA
a(n) = n / A055231(n).
Multiplicative with a(p)=1 and a(p^e)=p^e for e>1. - Vladeta Jovovic, Nov 01 2001
From Antti Karttunen, Nov 22 2017: (Start)
a(n) = A064549(A003557(n)).
A003557(a(n)) = A003557(n).
(End)
a(n) = gcd(n, A003415(n)^k), for all k >= 2. [This formula was found in the form k=3 by Christian Krause's LODA miner. See Ufnarovski and Åhlander paper, Theorem 5 on p. 4 for why this holds] - Antti Karttunen, Mar 09 2021
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 + 1/p^s - 1/ p^(s-1) + 1/p^(2*s-2) - 1/p^(2*s-1)). - Amiram Eldar, Sep 18 2023
EXAMPLE
a(40) = 8 since 40 = 2^3 * 5 so the powerful part is 2^3 = 8.
MAPLE
A057521 := proc(n)
local a, d, e, p;
a := 1;
for d in ifactors(n)[2] do
e := d[1] ;
p := d[2] ;
if e > 1 then
a := a*p^e ;
end if;
end do:
return a;
end proc: # R. J. Mathar, Jun 09 2016
MATHEMATICA
rad[n_] := Times @@ First /@ FactorInteger[n]; a[n_] := n/Denominator[n/rad[n]^2]; Table[a[n], {n, 1, 97}] (* Jean-François Alcover, Jun 20 2013 *)
f[p_, e_] := If[e > 1, p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
PROG
(PARI) a(n)=my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)) \\ Charles R Greathouse IV, Aug 13 2013
(PARI) a(n) = my(f=factor(n)); for (i=1, #f~, if (f[i, 2]==1, f[i, 1]=1)); factorback(f); \\ Michel Marcus, Jan 29 2021
(Python)
from sympy import factorint, prod
def a(n): return 1 if n==1 else prod(1 if e==1 else p**e for p, e in factorint(n).items())
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 19 2017
(Python)
from math import prod
from sympy import factorint
def A057521(n): return n//prod(p for p, e in factorint(n).items() if e == 1) # Chai Wah Wu, Nov 14 2022
CROSSREFS
Sequence in context: A366993 A274006 A203025 * A084885 A360969 A112538
KEYWORD
nonn,mult,easy
AUTHOR
Henry Bottomley, Sep 01 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 12:05 EST 2024. Contains 370375 sequences. (Running on oeis4.)