login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203025
Largest perfect power divisor of n.
8
1, 1, 1, 4, 1, 1, 1, 8, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 8, 25, 1, 27, 4, 1, 1, 1, 32, 1, 1, 1, 36, 1, 1, 1, 8, 1, 1, 1, 4, 9, 1, 1, 16, 49, 25, 1, 4, 1, 27, 1, 8, 1, 1, 1, 4, 1, 1, 9, 64, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 25, 4, 1, 1, 1, 16, 81, 1
OFFSET
1,4
COMMENTS
This sequence shares many elements with A057521, but is not identical: A057521(72)=72 but a(72)=36.
Not multiplicative: a(49)=49; a(125)=125, a(49*125) = 1225 <> 49*125.
LINKS
FORMULA
a(n) = max{ A001597(k) : A001597(k)|n }. - R. J. Mathar, Jun 09 2016
EXAMPLE
a(40)=a(2^3*5)=2^3=8.
MAPLE
A203025 := proc(n)
local a, d;
a := 1;
for d in numtheory[divisors](n) do
if isA001597(d) then # implemented in A001597
a := max(a, d) ;
end if;
end do:
return a;
end proc: # R. J. Mathar, Jun 09 2016
MATHEMATICA
Table[If[SquareFreeQ[n], 1, s = FactorInteger[n]; Max[Table[Times @@ Cases[s, {p_, ep_} :> p^i /; (ep >= i)], {i, 2, Max[s[[All, 2]]]}]]], {n, 100}] (* Olivier Gerard, Jun 03 2016 *)
PROG
(PARI) a(n)=my(f=factor(n), mx=1); for(e=2, if(n>1, vecmax(f[, 2])), mx=max(mx, prod(i=1, #f[, 1], f[i, 1]^(f[i, 2]\e*e)))); mx \\ Charles R Greathouse IV, Dec 28 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Antonio Roldán, Dec 28 2011
EXTENSIONS
Values matching definition restored by Franklin T. Adams-Watters, Jun 06 2016
STATUS
approved