login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360969
Multiplicative with a(p^e) = e^2, p prime and e > 0.
4
1, 1, 1, 4, 1, 1, 1, 9, 4, 1, 1, 4, 1, 1, 1, 16, 1, 4, 1, 4, 1, 1, 1, 9, 4, 1, 9, 4, 1, 1, 1, 25, 1, 1, 1, 16, 1, 1, 1, 9, 1, 1, 1, 4, 4, 1, 1, 16, 4, 4, 1, 4, 1, 9, 1, 9, 1, 1, 1, 4, 1, 1, 4, 36, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 4, 4, 1, 1, 1, 16, 16, 1, 1, 4
OFFSET
1,4
COMMENTS
From Bernard Schott, Feb 27 2023: (Start)
The three fixed points are 1, 4 and 16.
a(n) = 1 iff n is A005117.
a(n) = 4 iff n is in A060687. (End)
LINKS
FORMULA
Dirichlet g.f.: zeta(s) * Product_{primes p} (1 + (3*p^s - 1) / (p^s*(p^s - 1)^2)).
Sum_{k=1..n} a(k) ~ c*n, where c = Product_{primes p} (1 + (3*p - 1) / (p*(p-1)^2)) = 8.18840474382698544967326709964388539461401085196013492328186138...
a(n) = A005361(n)^2.
MAPLE
f:= proc(n) local t;
mul(t^2, t = ifactors(n)[2][.., 2]);
end proc:
map(f, [$1..100]); # Robert Israel, Mar 29 2023
MATHEMATICA
g[p_, e_] := e^2; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X + 4*X^2 - X^3)/(1-X)^3)[n], ", "))
(PARI) a(n) = my(f=factor(n)); for (k=1, #f~, f[k, 1]=f[k, 2]^2; f[k, 2]=1); factorback(f); \\ Michel Marcus, Feb 27 2023
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Vaclav Kotesovec, Feb 27 2023
STATUS
approved