OFFSET
0,3
COMMENTS
The function (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) is rational for every positive integer n.
For numerators see A360945.
LINKS
FORMULA
EXAMPLE
a(0) = 1 because lim_{n->0} (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) = 1.
a(3) = 45 because (Zeta(2*3+1,1/4) - Zeta(2*3+1,3/4))/Pi^(2*3+1) = 244/45.
MATHEMATICA
Table[(Zeta[2*n + 1, 1/4] - Zeta[2*n + 1, 3/4]) / Pi^(2*n + 1), {n, 0, 25}] // FunctionExpand // Denominator
(* Second program: *)
a[n_] := SeriesCoefficient[Tan[x + Pi/4], {x, 0, 2n}] // Denominator;
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 16 2023 *)
PROG
(PARI) a(n) = denominator(abs(eulerfrac(2*n))*(2*n + 1)*2^(2*n)/(2*n + 1)!); \\ Michel Marcus, Apr 11 2023
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Artur Jasinski, Apr 09 2023
STATUS
approved