login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360964
Triangle T(n, k), n > 0, k = 0..n-1, read by rows: T(n, k) is the least base b >= 2 where the number of digits of n and k are different.
3
2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 5, 6, 2, 2, 2, 2, 5, 6, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 10, 2, 2, 2, 2, 2, 2, 2, 2, 3, 10, 11, 2, 2, 2, 2, 2, 2, 2, 2, 3, 10, 11, 12, 2, 2, 2, 2, 2, 2, 2, 2, 3, 10, 11, 12, 13
OFFSET
1,1
COMMENTS
Leading zeros are ignored (and 0 is assumed to have length 0).
FORMULA
T(n, 0) = 2.
T(n, n-1) = A052410(n) for any n > 1.
EXAMPLE
Triangle T(n, k) begins:
n\k | 0 1 2 3 4 5 6 7 8 9 10 11
----+--------------------------------------
1 | 2
2 | 2 2
3 | 2 2 3
4 | 2 2 2 2
5 | 2 2 2 2 5
6 | 2 2 2 2 5 6
7 | 2 2 2 2 5 6 7
8 | 2 2 2 2 2 2 2 2
9 | 2 2 2 2 2 2 2 2 3
10 | 2 2 2 2 2 2 2 2 3 10
11 | 2 2 2 2 2 2 2 2 3 10 11
12 | 2 2 2 2 2 2 2 2 3 10 11 12
PROG
(PARI) T(n, k) = { for (b=2, oo, if (#digits(n, b) != #digits(k, b), return (b))) }
CROSSREFS
Sequence in context: A046921 A262954 A262813 * A188794 A161966 A187188
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Feb 27 2023
STATUS
approved