login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360963
Triangle T(n, k), n > 0, k = 0..n-1, read by rows: T(n, k) is the least e > 0 such that the binary expansions of n^e and k^e have different lengths.
3
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3
OFFSET
1,6
COMMENTS
Leading zeros are ignored (and 0 is assumed to have binary length 0).
LINKS
Rémy Sigrist, Table of n, a(n) for n = 1..10011 (rows for n = 1..141 flattened)
FORMULA
T(n, 0) = 1.
T(n, n-1) = A183200(n-1) for n > 1.
EXAMPLE
Triangle T(n, k) begins:
n\k | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
----+-------------------------------------------------
1 | 1
2 | 1 1
3 | 1 1 2
4 | 1 1 1 1
5 | 1 1 1 1 4
6 | 1 1 1 1 2 2
7 | 1 1 1 1 2 2 3
8 | 1 1 1 1 1 1 1 1
9 | 1 1 1 1 1 1 1 1 6
10 | 1 1 1 1 1 1 1 1 4 4
11 | 1 1 1 1 1 1 1 1 3 3 3
12 | 1 1 1 1 1 1 1 1 2 2 2 2
13 | 1 1 1 1 1 1 1 1 2 2 2 2 3
14 | 1 1 1 1 1 1 1 1 2 2 2 2 3 4
15 | 1 1 1 1 1 1 1 1 2 2 2 2 3 4 6
PROG
(PARI) T(n, k) = { for (e=1, oo, if (#binary(n^e) != #binary(k^e), return (e))) }
CROSSREFS
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Feb 27 2023
STATUS
approved