login
A173953
a(n) = numerator of (Zeta(2, 3/4) - Zeta(2, n-1/4)), where Zeta is the Hurwitz Zeta function.
14
0, 16, 928, 119344, 3078464, 1132669904, 606887707616, 49610806397296, 48006150564413056, 48265162121607952, 8192066749392160288, 15200753287254377716912, 33677610844789597790454208
OFFSET
1,2
COMMENTS
All numbers in this sequence are divisible by 16. For A173953/16 see A173955.
a(n+2)/A173954(n+2) is, for n >= 0, the partial sum Sum_{k=0..n} 1/(k + 3/4)^2 = 16*Sum_{k=0..n} 1/(4*k + 3)^2. The limit n -> infinity is given in A282824 as Zeta(2, 3/4) = Psi(1, 3/4) = Pi^2 - 8*Catalan, with the trigamma function Psi(1, z) and the Catalan constant A006752.
LINKS
Eric Weisstein's World of Mathematics, Hurwitz Zeta Function
Eric Weisstein's World of Mathematics, Trigamma Function
FORMULA
a(n) = Numerator of (Pi^2 - 8*Catalan - Zeta(2, (4 n - 1)/4)).
Numerator of 128*n*Sum_{k>=1} (4*k - 1 + 2*n) / ((4*k - 1)^2 * (4*k - 1 + 4*n)^2). - Vaclav Kotesovec, Nov 14 2017
Numerator of 16*Sum_{k=0..n-2} 1/(4*k + 3)^2, n >= 2, with a(1) = 0. See a comment above. - Wolfdieter Lang, Nov 14 2017
EXAMPLE
The rationals r(n) = Zeta(2, 3/4) - Zeta(2, n-1/4) begin: 0/1, 16/9, 928/441, 119344/53361, 3078464/1334025, 1132669904/481583025, 606887707616/254757420225, 49610806397296/20635351038225, ... - Wolfdieter Lang, Nov 14 2017
MAPLE
r := n -> Zeta(0, 2, 3/4) - Zeta(0, 2, n-1/4):
seq(numer(simplify(r(n))), n=1..13); # Peter Luschny, Nov 14 2017
MATHEMATICA
Table[Numerator[FunctionExpand[Pi^2 - 8*Catalan - Zeta[2, (4*n - 1)/4]]], {n, 1, 20}] (* Vaclav Kotesovec, Nov 14 2017 *)
Numerator[Table[128*n*Sum[(4*k - 1 + 2*n) / ((4*k - 1)^2 * (4*k - 1 + 4*n)^2), {k, 1, Infinity}], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *)
Numerator[Table[16*Sum[1/(4*k + 3)^2, {k, 0, n-1}], {n, 1, 20}]] (* Vaclav Kotesovec, Nov 15 2017 *)
PROG
(PARI) for(n=1, 20, print1(numerator(16*sum(k=0, n-2, 1/(4*k+3)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
(Magma) [0] cat [Numerator((&+[16/(4*k+3)^2: k in [0..n-2]])): n in [2..20]]; // G. C. Greubel, Aug 23 2018
CROSSREFS
Denominators are in A173954.
Sequence in context: A006089 A260620 A290940 * A211105 A276637 A211081
KEYWORD
frac,nonn,easy
AUTHOR
Artur Jasinski, Mar 03 2010
EXTENSIONS
Name simplified by Peter Luschny, Nov 14 2017
STATUS
approved