OFFSET
1,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..250
Eric Weisstein's World of Mathematics, Hurwitz Zeta Function
Eric Weisstein's World of Mathematics, Trigamma Function
FORMULA
a(n) = Numerator of (Pi^2 - 8*Catalan - Zeta(2, (4 n - 1)/4)).
Numerator of 128*n*Sum_{k>=1} (4*k - 1 + 2*n) / ((4*k - 1)^2 * (4*k - 1 + 4*n)^2). - Vaclav Kotesovec, Nov 14 2017
Numerator of 16*Sum_{k=0..n-2} 1/(4*k + 3)^2, n >= 2, with a(1) = 0. See a comment above. - Wolfdieter Lang, Nov 14 2017
EXAMPLE
The rationals r(n) = Zeta(2, 3/4) - Zeta(2, n-1/4) begin: 0/1, 16/9, 928/441, 119344/53361, 3078464/1334025, 1132669904/481583025, 606887707616/254757420225, 49610806397296/20635351038225, ... - Wolfdieter Lang, Nov 14 2017
MAPLE
r := n -> Zeta(0, 2, 3/4) - Zeta(0, 2, n-1/4):
seq(numer(simplify(r(n))), n=1..13); # Peter Luschny, Nov 14 2017
MATHEMATICA
Table[Numerator[FunctionExpand[Pi^2 - 8*Catalan - Zeta[2, (4*n - 1)/4]]], {n, 1, 20}] (* Vaclav Kotesovec, Nov 14 2017 *)
Numerator[Table[128*n*Sum[(4*k - 1 + 2*n) / ((4*k - 1)^2 * (4*k - 1 + 4*n)^2), {k, 1, Infinity}], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *)
Numerator[Table[16*Sum[1/(4*k + 3)^2, {k, 0, n-1}], {n, 1, 20}]] (* Vaclav Kotesovec, Nov 15 2017 *)
PROG
(PARI) for(n=1, 20, print1(numerator(16*sum(k=0, n-2, 1/(4*k+3)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
(Magma) [0] cat [Numerator((&+[16/(4*k+3)^2: k in [0..n-2]])): n in [2..20]]; // G. C. Greubel, Aug 23 2018
CROSSREFS
KEYWORD
frac,nonn,easy
AUTHOR
Artur Jasinski, Mar 03 2010
EXTENSIONS
Name simplified by Peter Luschny, Nov 14 2017
STATUS
approved