login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120268
Numerator of Sum_{k=1..n} 1/(2*k-1)^2.
18
1, 10, 259, 12916, 117469, 14312974, 2430898831, 487983368, 141433003757, 51174593563322, 51270597630767, 27164483940418988, 3400039831130408821, 30634921277843705014, 25789165074168004597399
OFFSET
1,2
COMMENTS
a((p-1)/2) is divisible by prime p > 3.
The limit of the rationals r(n) = Sum_{k=1..n} 1/(2*k-1)^2, for n -> infinity, is (Pi^2)/8 = (1 - 1/2^2)*Zeta(2), which is approximately 1.233700550.
r(n) = (Psi(1, 1/2) - Psi(1, n+1/2))/4 for n >= 1, where Psi(n,k) = Polygamma(n,k) is the n-th derivative of the digamma function. Psi(1, 1/2) = 3*Zeta(2) = Pi^2/2. - Jean-François Alcover, Dec 02 2013 [Corrected by Petros Hadjicostas, May 09 2020]
LINKS
Wolfdieter Lang, Rationals and limit.
FORMULA
a(n) = numerator( Pi^2/2 - Zeta(2,(2n+1)/2) ) / 4 for n > 0. - Artur Jasinski, Mar 03 2010 [corrected by Bruno Berselli, Dec 02 2013]
EXAMPLE
Fractions begin: 1, 10/9, 259/225, 12916/11025, 117469/99225, 14312974/12006225, 2430898831/2029052025, 487983368/405810405, ... = A120268/A128492.
MATHEMATICA
Numerator[Table[Sum[1/(2k-1)^2, {k, 1, n}], {n, 1, 25}]]
Table[(PolyGamma[1, 1/2] - PolyGamma[1, n+1/2])/4 // Numerator, {n, 1, 15}] (* Jean-François Alcover, Dec 02 2013 *)
Accumulate[1/(2*Range[20]-1)^2]//Numerator (* Harvey P. Dale, Jun 14 2020 *)
PROG
(PARI) for(n=1, 20, print1(numerator(sum(k=1, n, 1/(2*k-1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
(Magma) [Numerator((&+[1/(2*k-1)^2: k in [1..n]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
CROSSREFS
Cf. A007406, A025550, A128492 (denominators).
Sequence in context: A336665 A024293 A361559 * A001824 A024294 A183406
KEYWORD
nonn,frac
AUTHOR
Alexander Adamchuk, Jul 01 2006
STATUS
approved