login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120268 Numerator of Sum_{k=1..n} 1/(2k-1)^2. 18
1, 10, 259, 12916, 117469, 14312974, 2430898831, 487983368, 141433003757, 51174593563322, 51270597630767, 27164483940418988, 3400039831130408821, 30634921277843705014, 25789165074168004597399 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a((p-1)/2) is divisible by prime p > 3.

Denominators are A128492.

The limit of the rationals r(n) = Sum_{k=1..n} 1/(2k-1)^2, for n -> infinity, is (Pi^2)/8 = (1 - 1/2^2)*Zeta(2), which is approximately 1.233700550.

r(n) = (Psi(1, 1/2) - Psi(1, n+1/2))/4 for n >= 1, where Psi(n,k) = Polygamma(n,k) is the n^th derivative of the digamma function. Psi(1, 1/2) = 3*Zeta(2) = Pi/2. - Jean-François Alcover, Dec 02 2013

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..300

W. Lang, Rationals and limit.

FORMULA

a(n) = numerator( Pi^2/2 - Zeta(2,(2n+1)/2) ) / 4 for n > 0. - Artur Jasinski, Mar 03 2010 [corrected by Bruno Berselli, Dec 02 2013]

EXAMPLE

Fractions begin: 1, 10/9, 259/225, 12916/11025, 117469/99225, 14312974/12006225, 2430898831/2029052025, 487983368/405810405, ...

MATHEMATICA

Numerator[Table[Sum[1/(2k-1)^2, {k, 1, n}], {n, 1, 25}]]

Table[(PolyGamma[1, 1/2] - PolyGamma[1, n+1/2])/4 // Numerator, {n, 1, 15}] (* Jean-François Alcover, Dec 02 2013 *)

PROG

(PARI) for(n=1, 20, print1(numerator(sum(k=1, n, 1/(2*k-1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018

(MAGMA) [Numerator((&+[1/(2*k-1)^2: k in [1..n]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018

CROSSREFS

Cf. A025550, A007406.

Sequence in context: A251588 A126468 A024293 * A001824 A024294 A183406

Adjacent sequences:  A120265 A120266 A120267 * A120269 A120270 A120271

KEYWORD

nonn,frac

AUTHOR

Alexander Adamchuk, Jul 01 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 08:00 EDT 2019. Contains 328315 sequences. (Running on oeis4.)