This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120269 Numerator of Sum_{k=1..n} 1/(2k-1)^4. 5
 1, 82, 51331, 123296356, 9988505461, 146251554055126, 4177234784807204311, 4177316109293528392, 348897735816424941428857, 45469045689642442391390873722, 45469276109166591994111574347 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a((p-1)/2) is divisible by prime p > 5. Denominators are in A128493. The limit of the rationals r(n) = Sum_{k=1..n} 1/(2k-1)^4, for n -> infinity, is (Pi^4)/96 = (1 - 1/2^4)*zeta(4), which is approximately 1.014678032. r(n) = (Psi(3, 1/2) - Psi(3, n+1/2))/(3!*2^4) for n >= 1, where Psi(n,k) = Polygamma(n,k) is the n^th derivative of the digamma function. Psi(3, 1/2) = 3!*15*zeta(4) = Pi^4. - Jean-François Alcover, Dec 02 2013 LINKS G. C. Greubel, Table of n, a(n) for n = 1..293 W. Lang, Rationals and limit. MATHEMATICA Numerator[Table[Sum[1/(2k-1)^4, {k, 1, n}], {n, 1, 20}]] Table[(PolyGamma[3, 1/2] - PolyGamma[3, n + 1/2])/(3!*2^4) // Simplify // Numerator, {n, 1, 15}] (* Jean-François Alcover, Dec 02 2013 *) PROG (PARI) for(n=1, 20, print1(numerator(sum(k=1, n, 1/(2*k-1)^4)), ", ")) \\ G. C. Greubel, Aug 23 2018 (MAGMA) [Numerator((&+[1/(2*k-1)^4: k in [1..n]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018 CROSSREFS Cf. A007410, A013662, A025550. Sequence in context: A204976 A204703 A206648 * A291586 A015077 A015040 Adjacent sequences:  A120266 A120267 A120268 * A120270 A120271 A120272 KEYWORD nonn,frac AUTHOR Alexander Adamchuk, Jul 01 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 10:15 EDT 2019. Contains 328026 sequences. (Running on oeis4.)