OFFSET
1,2
COMMENTS
a((p-1)/2) is divisible by prime p > 5.
Denominators are in A128493.
The limit of the rationals r(n) = Sum_{k=1..n} 1/(2k-1)^4, for n -> infinity, is (Pi^4)/96 = (1 - 1/2^4)*zeta(4), which is approximately 1.014678032.
r(n) = (Psi(3, 1/2) - Psi(3, n+1/2))/(3!*2^4) for n >= 1, where Psi(n,k) = Polygamma(n,k) is the n^th derivative of the digamma function. Psi(3, 1/2) = 3!*15*zeta(4) = Pi^4. - Jean-François Alcover, Dec 02 2013
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..293
W. Lang, Rationals and limit.
MATHEMATICA
Numerator[Table[Sum[1/(2k-1)^4, {k, 1, n}], {n, 1, 20}]]
Table[(PolyGamma[3, 1/2] - PolyGamma[3, n + 1/2])/(3!*2^4) // Simplify // Numerator, {n, 1, 15}] (* Jean-François Alcover, Dec 02 2013 *)
PROG
(PARI) for(n=1, 20, print1(numerator(sum(k=1, n, 1/(2*k-1)^4)), ", ")) \\ G. C. Greubel, Aug 23 2018
(Magma) [Numerator((&+[1/(2*k-1)^4: k in [1..n]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Alexander Adamchuk, Jul 01 2006
STATUS
approved