login
A291586
a(n) = ((2n-1)!!)^4 * Sum_{i=1..n} 1/(2*i-1)^4.
4
0, 1, 82, 51331, 123296356, 809068942341, 11846375878465206, 338356017569383549191, 17129606870671774862445000, 1430698777932227525446706735625, 186451505481090040331197201556276250, 36261458995575361475673937929555130516875
OFFSET
0,3
LINKS
FORMULA
a(0) = 0, a(1) = 1, a(n+1) = ((2*n-1)^4+(2*n+1)^4)*a(n) - (2*n-1)^8*a(n-1) for n > 0.
a(n) ~ Pi^4 * 2^(4*n-3) * n^(4*n) / (3*exp(4*n)). - Vaclav Kotesovec, Aug 27 2017
MATHEMATICA
Table[(2*n-1)!!^4 * Sum[1/(2*i-1)^4, {i, 1, n}], {n, 0, 15}] (* Vaclav Kotesovec, Aug 27 2017 *)
CROSSREFS
Sequence in context: A204703 A206648 A120269 * A015077 A015040 A235982
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 27 2017
STATUS
approved