login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361559
a(n) = Sum_{k=1..prime(n)-1} floor(k^5/prime(n)).
0
0, 10, 258, 1740, 20070, 48510, 196920, 350370, 937860, 3075030, 4322160, 10641330, 17925180, 22825110, 35827560, 65816010, 113180910, 133937670, 215070570, 288148140, 331474860, 493573080, 633015810, 899599140, 1387338960, 1700082450, 1876303260, 2272556790, 2494333710
OFFSET
1,2
LINKS
Jean-Christophe Pain, A prime sum involving Bernoulli numbers, arXiv:2303.07934 [math.HO], 2023. See (23) p. 4.
FORMULA
a(n) = (p-2)*(p-1)*(p+1)*(2*p^2-2*p+3)/12 where p=prime(n).
MAPLE
a:= n-> (p-> (p-2)*(p-1)*(p+1)*(2*p^2-2*p+3)/12)(ithprime(n)):
seq(a(n), n=1..29); # Alois P. Heinz, Mar 15 2023
PROG
(PARI) a(n) = my(p=prime(n)); sum(k=1, p-1, k^5\p);
CROSSREFS
Cf. A078837 (for k^3).
Sequence in context: A126468 A336665 A024293 * A120268 A001824 A024294
KEYWORD
nonn
AUTHOR
Michel Marcus, Mar 15 2023
STATUS
approved