login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120265
a(n) = numerator(Sum_{k=1..n} 1/k!).
12
1, 3, 5, 41, 103, 1237, 433, 69281, 62353, 6235301, 8573539, 164611949, 5349888343, 29959374721, 561738276019, 35951249665217, 4701317263913, 11001082397556421, 52255141388393, 4180411311071440001, 43894318766250120011, 386270005143001056097
OFFSET
1,2
LINKS
FORMULA
A061355(n) = denominator(Sum_{k=1..n} 1/k!).
a(n) = A061354(n) - A061355(n).
a(n) = numerator(exp(1)*gamma(n + 1,1)/gamma(n + 1) - 1). - Gerry Martens, May 31 2018
(exp(x)-1) / (1-x) is the o.g.f. for the sequence of fractions. - Joerg Arndt, Jun 01 2018
EXAMPLE
1, 3/2, 5/3, 41/24, 103/60, 1237/720, 433/252, 69281/40320, 62353/36288, 6235301/3628800, 8573539/4989600, 164611949/
95800320, 5349888343/3113510400, ...
MAPLE
a:= n-> numer(add(1/i!, i=1..n)): seq(a(n), n=1..23); # Zerinvary Lajos, Mar 28 2007
MATHEMATICA
Numerator[Table[Sum[1/k!, {k, 1, n}], {n, 1, 30}]]
PROG
(PARI) a(n) = numerator(sum(k=1, n, 1/k!)); \\ Michel Marcus, Jun 01 2018
CROSSREFS
Cf. A061354, A061355 (denominator).
Sequence in context: A178545 A145912 A096058 * A158328 A258933 A060433
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Jun 30 2006
STATUS
approved