|
|
A061355
|
|
Denominator of Sum_{k=0..n} 1/k!.
|
|
20
|
|
|
1, 1, 2, 3, 24, 60, 720, 252, 40320, 36288, 3628800, 4989600, 95800320, 3113510400, 17435658240, 326918592000, 20922789888000, 2736057139200, 6402373705728000, 30411275102208, 2432902008176640000, 25545471085854720000, 224800145555521536000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
An inverse of A002034: A002034(a(n)) = n for n > 0. But not the least inverse: a(n) > A046021(n) for n > 3. - Jonathan Sondow, Jan 09 2005
|
|
LINKS
|
Harry J. Smith, Table of n, a(n) for n = 0..200
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, arXiv:0709.0671 [math.NT], 2007-2009; Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
Index entries for sequences related to factorial numbers.
|
|
FORMULA
|
Denominators of floor(n!*exp(1))/n!. Denominators of coefficients in expansion of exp(x)/(1-x). - Vladeta Jovovic, Aug 11 2002
a(n) = n!/gcd(n!, 1 + n + n(n-1) + n(n-1)(n-2) + ... + n!). - Jonathan Sondow, Jan 09 2005
a(n) = denominator(exp(1)*gamma(n + 1,1)/gamma(n + 1)-1)). - Gerry Martens, May 31 2018
|
|
EXAMPLE
|
1, 2, 5/2, 8/3, 65/24, 163/60, 1957/720, 685/252, ...
|
|
MAPLE
|
BB:=n->sum(1/i!, i=1..n): a:=n->floor(denom(BB(n))): seq(a(n), n=0..22); # Zerinvary Lajos, Mar 28 2007
|
|
MATHEMATICA
|
A061355[n_] := Denominator[Sum[1/k!, {k, 0, n}]]; Array[A061355, 23, 0] (* JungHwan Min, Nov 08 2016 *)
|
|
PROG
|
(PARI) { default(realprecision, 500); e=exp(1); for (n=0, 200, a=denominator(floor(n!*e)/n!); write("b061355.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 21 2009
(PARI) first(n) = my(res = vector(n), s = 0, f = 1); for(i = 1, n, f *= i; s += 1/f; res[i] = denominator(s)); res \\ David A. Corneth, May 31 2018
(GAP) List(List([0..25], n->Sum([0..n], k->1/Factorial(k))), DenominatorRat); # Muniru A Asiru, Jun 01 2018
|
|
CROSSREFS
|
Cf. A061354 (numerators), A093101.
a(n) = n!/A093101(n) for n > 0. See also A002034, A046021.
Sequence in context: A061778 A160667 A118204 * A160618 A279335 A343566
Adjacent sequences: A061352 A061353 A061354 * A061356 A061357 A061358
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
Amarnath Murthy, Apr 28 2001
|
|
STATUS
|
approved
|
|
|
|