OFFSET
0,4
COMMENTS
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..4096
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
FORMULA
a(n) = gcd(n!, 1+n+n(n-1)+n(n-1)(n-2)+...+n!).
a(n) = gcd(n!, A(n)) where A(0) = 1, A(n) = n*A(n-1)+1.
EXAMPLE
E.g. 1/0!+1/1!+1/2!+1/3!=16/6=(2*8)/(2*3) so a(3)=2.
MATHEMATICA
f[n_] := n! / Denominator[ Sum[1/k!, {k, 0, n}]]; Table[ f[n], {n, 0, 74}] (* Robert G. Wilson v *)
(* Second program: *)
A[n_] := If[n==0, 1, n*A[n-1]+1]; Table[GCD[A[n], n! ], {n, 0, 74}]
PROG
(PARI)
A000522(n) = sum(k=0, n, binomial(n, k)*k!); \\ This function from Joerg Arndt, Dec 14 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, May 10 2004, Oct 18 2006
EXTENSIONS
More terms from Robert G. Wilson v, May 14 2004
STATUS
approved