login
A123899
a(n) = (n+1)!/(d(n)*d(n+1)) where d(n) = cancellation factor in reducing Sum_{k=0...n} 1/k! to lowest terms.
7
1, 2, 3, 12, 60, 360, 252, 2016, 36288, 362880, 4989600, 11975040, 622702080, 8717829120, 65383718400, 5230697472000, 2736057139200, 49249028505600, 30411275102208, 608225502044160, 25545471085854720000
OFFSET
0,2
LINKS
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
FORMULA
a(n) = (n+1)!/(A093101(n)*A093101(n+1)) where A093101(n)=gcd(n!,1+n+n(n-1)+...+n!).
EXAMPLE
a(2) = 3 because (2+1)!/(d(2)*d(3)) = 3!/(gcd(2,5)*gcd(6,16)) = 6/2 = 3.
MATHEMATICA
(A[n_] := If[n==0, 1, n*A[n-1]+1]; d[n_] := GCD[A[n], n! ]; Table[(n+1)!/(d[n]*d[n+1]), {n, 0, 22}])
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Sondow, Oct 18 2006
STATUS
approved