login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A155579 Recursive sequence (n+1)*a(n) = 3*(3*n-2)*a(n-1). 2
2, 3, 12, 63, 378, 2457, 16848, 120042, 880308, 6602310, 50417640, 390736710, 3065780340, 24307258410, 194458067280, 1567818167445, 12726994535730, 103937122041795, 853378475711580, 7040372424620535, 58334514375427290 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This is built akin to (n+1)*C(n) = 2*(2*n-1)*C(n-1) for the Catalan numbers A000108.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2011-2013.

FORMULA

(n+1)*a(n) = 3*(3*n-2)*a(n-1).

From Vladimir Kruchinin, Sep 20 2010: (Start)

G.f.: A(x) = 1/3*(1-(1-9*x)^(2/3)).

a(n) = 3^(2*n-1)*sum(binomial(k,n-k)*2^(2*k-n)*(-1)^(n-k)*(if k=1 then (1/3) else 1/k*(1/3)^k*sum(binomial(i,k-1-i)*(-1/3)^(k-1-i)*binomial(i+k-1,k-1),i,1,k-1)),k,1,n),n>0. (End)

From Vaclav Kotesovec, Jul 20 2019: (Start)

a(n) = 2 * 3^(2*n) * Gamma(n + 1/3) / (Gamma(1/3) * Gamma(n+2)).

a(n) ~ 2 * 3^(2*n) / (Gamma(1/3) * n^(5/3)). (End)

MATHEMATICA

a[0] = 1; a[n_] := a[n] = ((3*n - 2)/(n + 1))*a[n - 1];

Table[2*3^(n)*a[n], {n, 0, 30}]

PROG

(Maxima) a(n):=3^(2*n-1)*sum(binomial(k, n-k)*2^(2*k-n)*(-1)^(n-k)*(if k=1 then (1/3) else 1/k*(1/3)^k*sum(binomial(i, k-1-i)*(-1/3)^(k-1-i)*binomial(i+k-1, k-1), i, 1, k-1)), k, 1, n); /* Vladimir Kruchinin, Sep 20 2010 */

CROSSREFS

Cf. A283150.

Sequence in context: A123899 A188588 A032133 * A108261 A013152 A012911

Adjacent sequences:  A155576 A155577 A155578 * A155580 A155581 A155582

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula, Jan 24 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 19:58 EDT 2021. Contains 344002 sequences. (Running on oeis4.)