OFFSET
0,1
COMMENTS
This is built akin to (n+1)*C(n) = 2*(2*n-1)*C(n-1) for the Catalan numbers A000108.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
(n+1)*a(n) = 3*(3*n-2)*a(n-1).
From Vladimir Kruchinin, Sep 20 2010: (Start)
G.f.: A(x) = 1/3*(1-(1-9*x)^(2/3)).
a(n) = 3^(2*n-1)*sum(binomial(k,n-k)*2^(2*k-n)*(-1)^(n-k)*(if k=1 then (1/3) else 1/k*(1/3)^k*sum(binomial(i,k-1-i)*(-1/3)^(k-1-i)*binomial(i+k-1,k-1),i,1,k-1)),k,1,n),n>0. (End)
From Vaclav Kotesovec, Jul 20 2019: (Start)
a(n) = 2 * 3^(2*n) * Gamma(n + 1/3) / (Gamma(1/3) * Gamma(n+2)).
a(n) ~ 2 * 3^(2*n) / (Gamma(1/3) * n^(5/3)). (End)
a(n) = 3*A185047(n-1) for n >= 1. - Peter Bala, Oct 14 2024
MATHEMATICA
a[0] = 1; a[n_] := a[n] = ((3*n - 2)/(n + 1))*a[n - 1];
Table[2*3^(n)*a[n], {n, 0, 30}]
PROG
(Maxima) a(n):=3^(2*n-1)*sum(binomial(k, n-k)*2^(2*k-n)*(-1)^(n-k)*(if k=1 then (1/3) else 1/k*(1/3)^k*sum(binomial(i, k-1-i)*(-1/3)^(k-1-i)*binomial(i+k-1, k-1), i, 1, k-1)), k, 1, n); /* Vladimir Kruchinin, Sep 20 2010 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Jan 24 2009
STATUS
approved