|
|
A353163
|
|
Expansion of e.g.f. exp(Sum_{p prime} x^p / (p-1)!).
|
|
2
|
|
|
1, 0, 2, 3, 12, 65, 210, 1477, 7560, 45864, 338310, 2176031, 17657640, 139280869, 1150004856, 10572694860, 94834041120, 931995595457, 9384294360168, 96974005210273, 1066116104926500, 11838081891521760, 137785102884102366, 1652584041236345933
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..23.
|
|
FORMULA
|
a(0) = 1; a(n) = Sum_{p<=n, p prime} p * binomial(n-1,p-1) * a(n-p).
|
|
PROG
|
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, isprime(k)*x^k/(k-1)!))))
(PARI) a(n) = if(n==0, 1, sum(k=1, n, isprime(k)*k*binomial(n-1, k-1)*a(n-k)));
|
|
CROSSREFS
|
Cf. A000040, A000248, A190476, A353162.
Sequence in context: A188588 A032133 A155579 * A108261 A013152 A012911
Adjacent sequences: A353160 A353161 A353162 * A353164 A353165 A353166
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Seiichi Manyama, Apr 28 2022
|
|
STATUS
|
approved
|
|
|
|