login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283150
Riordan array (1/(1-9x)^(1/3), x/(9x-1)).
3
1, 3, -1, 18, -12, 1, 126, -126, 21, -1, 945, -1260, 315, -30, 1, 7371, -12285, 4095, -585, 39, -1, 58968, -117936, 49140, -9360, 936, -48, 1, 480168, -1120392, 560196, -133380, 17784, -1368, 57, -1, 3961386, -10563696, 6162156, -1760616, 293436, -30096, 1881, -66, 1, 33011550, -99034650, 66023100
OFFSET
0,2
COMMENTS
Triangle read by rows. This is an example of a Riordan group involution. Dual Riordan array of A283151. With A283151 and A248324, forms doubly infinite Riordan array. For b and c the sequences A283151 and A248324, respectively, and i,j >= 0, the doubly infinite array with d(i,j) = a(i,j), d(-j,-i) = b(i,j), d(i,-j) = c(j,i), and d(-i,j) = 0 (except d(0,0)=1) is a doubly infinite Riordan array.
Matrix inverse of a(m,n) is a(m,n). - Werner Schulte, Aug 05 2017
LINKS
H. Prodinger, Some information about the binomial transform, The Fibonacci Quarterly, 32, 1994, 412-415.
Thomas M. Richardson, The three 'R's and Dual Riordan Arrays, arXiv:1609.01193 [math.CO], 2016.
FORMULA
a(m,n) = binomial(-n-1/3, m-n)*(-1)^m*9^(m-n).
G.f.: (1-9x)^(2/3)/(xy-9x+1).
Recurrence: a(m,n) = a(m, n-1)*(n-1-m)/(9*n-6) for 0 < n <= m. - Werner Schulte, Aug 05 2017
From Peter Bala, Mar 05 2018 (Start):
Let P(n,x) = Sum_{k = 0..n} T(n,k)*x^(n-k) denote the n-th row polynomial in descending powers of x. Then (-1)^n*P(n,x) is the n-th degree Taylor polynomial of (1 - 9*x)^(n-2/3) about 0. For example, for n = 4 we have (1 - 9*x)^(10/3) = 945*x^4 - 1260*x^3 + 315*x^2 - 30*x + 1 + O(x^5).
Let R(n,x) denote the n-th row polynomial of this triangle. The polynomial R(n,9*x) has the e.g.f. Sum_{k = 0..n} T(n,k)*(9*x)^k/k!. The e.g.f. for the n-th diagonal of the triangle (starting at n = 0 for the main diagonal) equals exp(-x) * the e.g.f. for the polynomial R(n,9*x). For example, when n = 3 we have exp(-x)*(126 - 126*(9*x) + 21*(9*x)^2/2! - (9*x)^3/3!) = 126 - 1260*x + 4095*x^2/2! - 9360*x^3/3! + 17784*x^4/4! - ....
Let F(x) = (1 - ( 1 - 9*x)^(2/3))/(3*x) denote the o.g.f. of A155579. The derivatives of F(x) are related to the row polynomials P(n,x) by the identity x^n/n! * (d/dx)^n(F(x)) = 1/(3*x)*( (-1)^n - P(n,x)/(1 - 9*x)^(n-2/3) ), n = 0,1,2,.... Cf. A283151 and A046521. (End)
From Peter Bala, Aug 18 2021: (Start)
T(n,k) = (-1)^k*binomial(n-2/3, n-k)*9^(n-k).
Analogous to the binomial transform we have the following sequence transformation formula: g(n) = Sum_{k = 0..n} T(n,k)*b^(n-k)*f(k) iff f(n) = Sum_{k = 0..n} T(n,k)*b^(n-k)*g(k). See Prodinger, bottom of p. 413, with b replaced with 9*b, c = -1 and d = 1/3.
Equivalently, if F(x) = Sum_{n >= 0} f(n)*x^n and G(x) = Sum_{n >= 0} g(n)*x^n are a pair of formal power series then
G(x) = (1/(1 - 9*b*x)^(1/3)) * F(x/(1 - 9*b*x)) iff F(x) = (1/(1 + 9*b*x)^(1/3)) * G(x/(1 + 9*b*x)).
The infinitesimal generator of the unsigned array has the sequence (9*n+3) n>=0 on the main subdiagonal and zeros elsewhere. The m-th power of the unsigned array has entries m^(n-k)*|T(n,k)|. (End)
EXAMPLE
The triangle begins
1;
3, -1;
18, -12, 1;
126, -126, 21, -1;
945, -1260, 315, -30, 1;
7371, -12285, 4095, -585, 39, -1;
58968, -117936, 49140, -9360, 936, -48, 1;
480168, -1120392, 560196, -133380, 17784, -1368, 57, -1;
3961386, -10563696, 6162156, -1760616, 293436, -30096, 1881, -66, 1;
MAPLE
T := (n, k) -> (-1)^k*binomial(n - 2/3, n - k)*9^(n - k):
for n from 0 to 6 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Sep 03 2021
PROG
(PARI) a(m, n) = binomial(-n-1/3, m-n)*(-1)^m*9^(m-n);
tabl(nn) = for(n=0, nn, for (k=0, n, print1(a(n, k), ", ")); print); \\ Michel Marcus, Aug 07 2017
CROSSREFS
KEYWORD
sign,tabl,easy,changed
AUTHOR
Tom Richardson, Mar 01 2017
EXTENSIONS
Offset corrected by Werner Schulte, Aug 05 2017
STATUS
approved