OFFSET
0,3
COMMENTS
Column 0 of A120981.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..1750
Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
FORMULA
a(n) = (1/(n+1))*Sum_{j=0..n+1} 3^(3*j-n)*binomial(n+1,j)*binomial(j,n-2*j).
G.f.: G(z) satisfies G=1+3z^2*G^2+z^3*G^3.
D-finite with recurrence 2*(2*n+3)*(n+1)*a(n) +3*(3*n+2)*(n-1)*a(n-1) -18*(3*n+1)*(n-1)*a(n-2) -135*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Jul 26 2022
a(n) = (1/(n+1)) * Sum_{k=0..n} (-3)^k * binomial(n+1,k) * binomial(3*n-3*k+3,n-k). - Seiichi Manyama, Mar 23 2024
EXAMPLE
a(2)=3 because we have (Q,L,M), (Q,L,R) and (Q,M,R), where Q denotes the root and L (M,R) denotes a left (middle, right) child of Q.
MAPLE
a:=n->sum(3^(3*j-n)*binomial(n+1, j)*binomial(j, n-2*j), j=0..n+1)/(n+1): seq(a(n), n=0..30);
MATHEMATICA
Array[Sum[3^(3 j - #)*Binomial[# + 1, j]*Binomial[j, # - 2 j], {j, 0, # + 1}]/(# + 1) &, 27, 0] (* Michael De Vlieger, Jul 02 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jul 21 2006
STATUS
approved