login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290317 Triangle read by rows. Row n gives the numerators of the coefficients of the Bernoulli polynomials of the second kind (in rising powers). 3
1, 1, 1, -1, 0, 1, 1, 0, -3, 1, -19, 0, 4, -4, 1, 9, 0, -15, 55, -15, 1, -863, 0, 72, -100, 105, -12, 1, 1375, 0, -420, 1918, -1575, 119, -35, 1, -33953, 0, 2880, -4704, 3248, -1176, 700, -24, 1, 57281, 0, -22680, 39204, -29547, 60921, -2940, 414, -63, 1, -3250433, 0, 201600, -365280, 295310, -134568, 37415, -6480, 1365, -40, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
For the denominators see A290318.
See the Weisstein link and the Roman reference for Bernoulli polynomials of the second kind.
The Bernoulli polynomials of the second kind B2(n, x) = Sum_{k=0..n} r(n, k)*x^k, with the rationals r(n, k) = T(n, k)/A290318(n, k), are the Sheffer polynomials (t/log(1 + t), log(1 + t)) (this notation differs from Roman's one). B2(n, x) = [t^n/n!] (t*(1 + t)^x / log(1 + t)). This means that the e.g.f of the sequence of column k (with leading zeros) is t*(log(1 + t))^(k-1)/k!, for k >= 0.
The rational triangle r(n, k) multiplied by A002790(n) becomes an integer triangle looking like A157982.
The a-sequence for the Sheffer polynomials B2(n, x) has e.g.f. t/(exp(t) - 1). aB2(n) = B_n = A027641(n) / A027642(n). The z-sequence has e.g.f. (exp(t) - (1+t))/(1 - exp(x))^2, with zB2(n) = (-1)^(n+1)*A051716(n+1) / A051717(n+1)
(n+1). (For a- and z-sequences of Sheffer triangles see the W. Lang link with references in A006232.)
REFERENCES
Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.
Steven Roman, The Umbral Calculus, Academic Press,1894, ch. 4, sect. 3.2, pp. 113-119, p. 50, p. 114.
LINKS
Eric Weisstein's World of Mathematics, Bernoulli Polynomial of the Second Kind.
FORMULA
T(n, k) = numerator(r(n, k)), with r(n, k) the entries of the rational Sheffer triangle (t/log(1 + t), log(1 + t)) (the coefficients of the Bernoulli polynomials of the second kind).
Recurrence for r(n, k) = T(n, k) / A290318(n, k) from a- and z-sequences (see a comment above): r(0, 0) = 1, r(n, 0) = n*Sum_{j=0..n-1} zB2(j)*r(n-1, j), for n >= 1, and r(n, m) = (n/k)*Sum_{j=0..n-k} binomial(k-1+j, j)*aB2(j)*r(n-1, k-1+j), with zB2(n) and aB2(n) given above in a comment.
Meixner type recurrence for monic Sheffer polynomials: B2(n, x + 1) = B2(n, x) + n*B2(n-1, x), B2(0, x) = 1. See Roman, p. 114.
Recurrence for general Sheffer polynomials (see Roman, Corollary 3.7.2, p. 50):
B2(0,x) = 1, B2(n, x) = x*B2(n-1, x-1) + D(n-1, d_x)*B2(n-1, x), for n >= 1 with D(n-1, t) = Sum_{k=0..n-1} s(k)*t^k/k!, with s(k) = [x^k/k!] ((1-exp(x)*(1-x)) / (x*(exp(x)-1)*exp(x))) and d_x = d/dx. The rationals s(n) = (-1)^n * A165226(n+1) / A164869(n+1).
Boas-Buck identity (see the reference, p.20, eq. (6.11) (last sign -), and the Rainville reference, p. 141, Theorem 50, computed for the present Shefffer example):
(E_x - n*1)*B2(n, x) - n!*(E_x - 1)*Sum_{k=0..n-1} alpha(k)*B2(n-1-k, x) / (n-1-k)! = 0, for n >= 0, with alpha(k) = A002208(n+1)/A002209(n+1) and E_x = x*d/dx (Euler operator).
Boas-Buck column k recurrence from the preceding identity for the rational Sheffer triangle, for n > k >= 0 with inputs r(k, k) = 1: r(n, k) = -n!*((k-1)/(n-k))*Sum_{p=k..n-1} (1/p!)*alpha(n-1-p)*r(p, k).
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 1 1
2: -1 0 1
3: 1 0 -3 1
4: -19 0 4 -4 1
5: 9 0 -15 55 -15 1
6: -863 0 72 -100 105 -12 1
7: 1375 0 -420 1918 -1575 119 -35 1
8: -33953 0 2880 -4704 3248 -1176 700 -24 1
9: 57281 0 -22680 39204 -29547 60921 -2940 414 -63 1
10: -3250433 0 201600 -365280 295310 -134568 37415 -6480 1365 -40 1
...
--------------------------------------------------------------------------------
The triangle of the rationals r(n, k) = T(n, k)/A290318(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
0: 1
1: 1/2 1
2: -1/6 0 1
3: 1/4 0 -3/2 1
4: 19/30 0 4 -4 1
5: 9/4 0 -15 55/3 -15/2 1
6: -863/84 0 72 -100 105/2 -12 1
7: 1375/24 0 -420 1918/3 -1575/4 119 -35/2
8: -33953/90 0 2880 -4704 3248 -1176 700/3 -24 1
9: 57281/20 0 -22680 39204 -29547 60921/5 -2940 414 -63/2 1
10: -3250433/132 0 201600 -365280 295310 -134568 37415 -6480 1365/2 -40 1
...
The first polynomials B2(n, x) are:
B2(0, x) = 1,
B2(1, x) = 1/2 + x,
B2(2, x) = -1/6 + x^2,
B2(3, x) = 1/4 - (3/2)*x^2 + x^3,
...
Recurrence from Sheffer a- and z-sequence:
r(3, 0) = 3*((1/2)*r(2,0) + (-1/3)*r(2,1) + (1/6)*r(2, 2)) = 3*(-1/12 + 0 + 1/6) = 1/4.
r(4, 2) = (4/2)*(1*1*r(3, 1) + 2*(-1/2)*r(3, 2) + 3*(1/6)*r(3, 3)) = 2*(0 - (-3/2) + 1/2) = 4.
General Sheffer recurrence for B2(n, x): B2(3, x) = x*B2(2, x-1) +
F(2, d_x)*B2(2, x) = ((5/6)*x - 2*x^2 + x^3) + (1/2 + (-5/12)*d/dx + (1/3)*(1/2!)*d^2/dx^2)*(-1/6+ x^2) = 1/4 - (3/2)*x^2 + x^3.The rationals s(n) begin {1/2, -5/12, 1/3, -31/120, 1/5, -41/252, ...}.
Boas-Buck identity for B2(3, x) check: (x*d/dx - 3*1)(1/4 - (3/2)*x^2 + x^3) - 3!*(x*d/dx - 1)* *((1/2)*B2(2, x)/2! + (-5/12)*B2(1, x)/1! + (3/8)) = 0.
The alpha sequence begins {1/2, -5/12, 3/8, -251/720, 95/288, -19087/60480, ...}.
Boas-Buck column k = 2 recurrence, for n=2: r(3, 2) = -(3!*1/1)*(1/2!) * alpha(0)*r(2, 2) = -(3!/2!)*(1/2)*1= -3!/4 = -3/2.
CROSSREFS
Sequence in context: A307064 A120984 A294792 * A016480 A086156 A227888
KEYWORD
sign,easy,frac,tabl
AUTHOR
Wolfdieter Lang, Aug 06 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 04:56 EDT 2024. Contains 371767 sequences. (Running on oeis4.)