login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290315
Triangle T(n, k) read by rows: row n gives the coefficients of the numerator polynomials of the o.g.f. of the (n+1)-th diagonal of the Sheffer triangle A154537 (S2[2,1] generalized Stirling2), for n >= 0.
1
1, 1, 2, 1, 16, 12, 1, 66, 284, 120, 1, 224, 2872, 5952, 1680, 1, 706, 21080, 116336, 146064, 30240, 1, 2160, 132228, 1531072, 4804656, 4130304, 665280, 1, 6530, 760500, 16271080, 101422640, 208791648, 132557760, 17297280, 1, 19648, 4155120, 151922560, 1661273440, 6556459008, 9657333504, 4766423040, 518918400, 1, 59010, 21993776, 1304454880, 23155279200, 155184721088, 427142449920, 477104352768, 189945688320, 17643225600
OFFSET
0,3
COMMENTS
The ordinary generating function (o.g.f.) of the (n+1)-th diagonal sequence of the Sheffer triangle A154537 = (e^x, e^(2*x) - 1), called S2[2,1], is GS2(2,1;n,x) = P(n, x)/(1 - 2*x)^(2*n+1), with the row polynomials P(n, x) = Sum_{k=0..n} T(n, k)*x^k, n >= 0.
In the general case of Sheffer S2[d,a] = (e^(a*x), e^(d*x) - 1) (with gcd(d,a) = 1, d >= 0, a >= 0, and for d = 1 one takes a = 0) the o.g.f. of the (n+1)-th diagonal sequence is G(d,a;n,x) = P(d,a;n,x)/(1 - d*x)^(2*n + 1) with the numerator polynomial P and coefficient table T(d,a;n,k).
For the computation of the exponential generating function (e.g.f.) of the o.g.f.s of the diagonal sequences of a Sheffer triangle (lower triangular matrix) via Lagrange's theorem see a comment in A290311.
FORMULA
T(n, k) = [x^k] P(n, x) with the numerator polynomial in the o.g.f. of the (n+1)-th diagonal sequence of the triangle A154537. See a comment above.
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: 1 2
2: 1 16 12
3: 1 66 284 120
4: 1 224 2872 5952 1680
5: 1 706 21080 116336 146064 30240
6: 1 2160 132228 1531072 4804656 4130304 665280
7: 1 6530 760500 16271080 101422640 208791648 132557760 17297280
...
n = 8: 1 19648 4155120 151922560 1661273440 6556459008 9657333504 4766423040 518918400,
n = 9: 1 59010 21993776 1304454880 23155279200 155184721088 427142449920 477104352768 189945688320 17643225600.
...
n=3: The o.g.f. of the 4th diagonal sequence of A154537, [1, 80, 1320, ...], is P(3, x) = (1 + 66*x + 284*x^2 + 120*x^3)/(1 - 2*x)^7.
CROSSREFS
Sequence in context: A324610 A373034 A247125 * A113108 A162005 A325220
KEYWORD
nonn,tabl
AUTHOR
Wolfdieter Lang, Jul 29 2017
STATUS
approved