OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
G.f.: (1 + 3*x - x^2)/(1 - x)^5.
E.g.f.: exp(x)*(1 + 7*x + 14*x^2/2! + 11*x^3/3! + 3*x^4/4!). This is computed from the o.g.f. with eqs. (23)-(25) of the Wolfdieter Lang 2017 link in A282629.
From Colin Barker, Jul 29 2017: (Start)
a(n) = (24 + 70*n + 69*n^2 + 26*n^3 + 3*n^4) / 24.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
(End)
PROG
(PARI) Vec((1 + 3*x - x^2)/(1 - x)^5 + O(x^60)) \\ Colin Barker, Jul 29 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 28 2017
STATUS
approved