login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362153
Number of skew shapes in a 3 X n rectangle with no empty rows or columns.
0
1, 8, 29, 73, 151, 276, 463, 729, 1093, 1576, 2201, 2993, 3979, 5188, 6651, 8401, 10473, 12904, 15733, 19001, 22751, 27028, 31879, 37353, 43501, 50376, 58033, 66529, 75923, 86276, 97651, 110113, 123729, 138568, 154701, 172201, 191143, 211604, 233663, 257401, 282901, 310248, 339529
OFFSET
1,2
FORMULA
a(n) = (n^4 + 8*n^3 + 11*n^2 - 20*n + 12)/12.
a(n) = [x^n] (-3*x^4 + 11*x^3 - 13*x^2 + 4*x - 1)/(x - 1)^5. - Peter Luschny, Apr 10 2023
EXAMPLE
The a(2) = 8 shapes are 211, 221, 222, 221/1, 222/1, 222/11, 221/11, 211/1.
MAPLE
a := proc(n) m := n*(n + 4); m*(m - 5) / 12 + 1 end:
seq(a(n), n = 1..43); # Peter Luschny, Apr 10 2023
CROSSREFS
Sequence in context: A288115 A100178 A106113 * A299260 A290312 A374974
KEYWORD
nonn,easy
AUTHOR
Richard Stanley, Apr 09 2023
STATUS
approved