OFFSET
0,5
COMMENTS
The o.g.f. of the (n+1)-th diagonal sequence of the Sheffer triangle (e^x, -(log(1-x))) (the product of two Sheffer triangles A007318*A132393 = Pascal*|Stirling1|) is P(n, x)/(1 - x)^{2*n+1}, for n >= 0., with the numerator polynomials P(n, x) = Sum_{k=0..n} T(n, k)*x^k.
O.g.f.'s for diagonal sequences of Sheffer matrices (lower triangular) can be computed via Lagrange's theorem. For the special case of Jabotinsky matrices (1, f(x)) this has been done by P. Bala (see the link under A112007), and the method can be generalized to Sheffer (g(x), f(x)), as shown in the W. Lang link given below.
LINKS
Wolfdieter Lang, On Generating functions of Diagonal Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
FORMULA
T(n, k) = [x^n] P(n, x) with the numerator polynomials (in rising powers) of the o.g.f. of the (n+1)-th diagonal sequence of the triangle A094816. See the comment above.
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 1 0
2: 1 3 -1
3: 1 17 -2 -1
4: 1 80 49 -27 2
5: 1 404 733 -153 -49 9
6: 1 2359 7860 1622 -1606 150 9
7: 1 16057 80715 58965 -17840 -3876 1163 -50
8: 1 125656 858706 1150722 47365 -175756 18239 2359 -267
9: 1 1112064 9710898 19571174 7548463 -3175846 -491809 194777 -9884 -413
...
MATHEMATICA
rows = 10; nmax = 30(*terms to find every gf*);
T = Table[(-1)^(n - k) Sum[Binomial[-j - 1, -n - 1] StirlingS1[j, k], {j, 0, n}], {n, 0, nmax}, {k, 0, nmax}];
row[n_] := FindGeneratingFunction[Diagonal[T, -n], x] // Numerator // CoefficientList[-#, x]&; row[0] = {1}; row[1] = {1, 0};
Table[row[n], {n, 0, rows-1}] // Flatten (* Jean-François Alcover, Jan 26 2019 *)
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Wolfdieter Lang, Jul 28 2017
STATUS
approved