login
A028419
Congruence classes of triangles which can be drawn using lattice points in n X n grid as vertices.
11
0, 1, 8, 29, 79, 172, 333, 587, 963, 1494, 2228, 3195, 4455, 6050, 8032, 10481, 13464, 17014, 21235, 26190, 31980, 38666, 46388, 55144, 65131, 76449, 89132, 103337, 119184, 136757, 156280, 177796, 201430, 227331, 255668, 286606, 320294, 356884, 396376, 439100, 485427, 535049, 588457, 645803
OFFSET
0,3
LINKS
D. Rusin, Lattice Problem (Triangles) [Dead link]
D. Rusin, Lattice Problem (Triangles) [Cached copy]
MAPLE
a:=proc(n) local TriangleSet, i, j, k, l, A, B, C; TriangleSet:={}: for i from 0 to n do for j from 0 to n do for k from 0 to n do for l from 0 to n do A:=i^2+j^2: B:=k^2+l^2: C:=(i-k)^2+(j-l)^2: if A^2+B^2+C^2<>2*(A*B+B*C+C*A) then TriangleSet:={op(TriangleSet), sort([sqrt(A), sqrt(B), sqrt(C)])}: fi: od: od: od: od: return(nops(TriangleSet)); end: # Martin Renner, May 03 2011
KEYWORD
nonn
EXTENSIONS
More terms from Chris Cole (chris(AT)questrel.com), Jun 28 2003
a(36)-a(39) from Martin Renner, May 08 2011
STATUS
approved