login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290316
Triangle T(n, k) read by rows: row n gives the coefficients of the numerator polynomials of the o.g.f. of the (n+1)-th diagonal of the Sheffer triangle A282629 (S2[3,1] generalized Stirling2), for n >= 0.
0
1, 1, 6, 1, 48, 90, 1, 234, 2214, 2160, 1, 996, 27432, 114588, 71280, 1, 4062, 260748, 2791800, 6770628, 2993760, 1, 16344, 2178630, 48256344, 280652364, 454137840, 152681760, 1, 65490, 16966530, 691711920, 7846782660, 29157089832, 34236464400, 9160905600, 1, 262092, 126820980, 8851303620, 174637926180, 1219804572672, 3187159638984, 2871984146400, 632102486400, 1, 1048518, 924701832, 105253405560, 3359003385600, 39425596747272, 188635513271256, 369150976563264, 265665182896800, 49303993939200
OFFSET
0,3
COMMENTS
The ordinary generating function (o.g.f.) of the (n+1)-th diagonal sequence of the Sheffer triangle A282629 = (e^x, e^(3*x) - 1), called S2[3,1], is GS2(3,1;n,x) = P(n, x)/(1 - 3*x)^(2*n+1), with the row polynomials P(n, x) = Sum_{k=0..n} T(n, k)*x^k, n >= 0.
For the general case Sheffer S2[d,a] = (e^(a*x), e^(d*x) - 1) (with gcd(d,a) = 1, d >=0, a >= 0, and for d = 1 one takes a = 0) see a comment in A290315.
For the computation of the exponential generating function (e.g.f.) of the o.g.f.s of the diagonal sequences of a Sheffer triangle (lower triangular matrix) via Lagrange's theorem see a comment and link in A290311.
FORMULA
T(n, k) = [x^k] P(n, x) with the numerator polynomials of the o.g.f. of the (n+1)-th diagonal sequence of the triangle A282629. See a comment above.
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: 1 6
2: 1 48 90
3: 1 234 2214 2160
4: 1 996 27432 114588 71280
5: 1 4062 260748 2791800 6770628 2993760
6: 1 16344 2178630 48256344 280652364 454137840 152681760
7: 1 65490 16966530 691711920 7846782660 29157089832 34236464400 9160905600
...
n = 8: 1 262092 126820980 8851303620 174637926180 1219804572672 3187159638984 2871984146400 632102486400,
n = 9: 1 1048518 924701832 105253405560 3359003385600 39425596747272 188635513271256 369150976563264 265665182896800 49303993939200.
...
n = 3: The o.g.f. of the 4th diagonal sequence of A282629, [1, 255, 7380, ...], is P(3, x) = (1 + 234*x + 2214*x^2 + 2160*x^3)/(1 - 3*x)^7.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Wolfdieter Lang, Aug 08 2017
STATUS
approved