login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120981
Triangle read by rows: T(n,k) is the number of ternary trees with n edges and having k vertices of outdegree 1 (n >= 0, k >= 0).
5
1, 0, 3, 3, 0, 9, 1, 27, 0, 27, 18, 12, 162, 0, 81, 15, 270, 90, 810, 0, 243, 138, 270, 2430, 540, 3645, 0, 729, 189, 2898, 2835, 17010, 2835, 15309, 0, 2187, 1218, 4536, 34776, 22680, 102060, 13608, 61236, 0, 6561, 2280, 32886, 61236, 312984, 153090, 551124
OFFSET
0,3
COMMENTS
A ternary tree is a rooted tree in which each vertex has at most three children and each child of a vertex is designated as its left or middle or right child.
LINKS
FORMULA
T(n,0) = A120984(n).
Sum_{k>=1} k*T(n,k) = 3*binomial(3n,n-1) = 3*A004319(n).
T(n,k) = (1/(n+1))*binomial(n+1,k)*Sum_{j=0..n+1-k} 3^(2k-n+3j)*binomial(n+1-k,j)*binomial(j,n-k-2j).
G.f.: G=G(t,z) satisfies G = 1 + 3tzG + 3z^2*G^2 + z^3*G^3.
EXAMPLE
T(2,0)=3 because we have (Q,L,M), (Q,L,R) and (Q,M,R), where Q denotes the root and L (M,R) denotes a left (middle, right) child of Q.
Triangle starts:
1;
0, 3;
3, 0, 9;
1, 27, 0, 27;
18, 12, 162, 0, 81;
15, 270, 90, 810, 0, 243;
MAPLE
T:=proc(n, k) if k<=n then (1/(n+1))*binomial(n+1, k)*sum(3^(3*j-n+2*k)*binomial(n+1-k, j)*binomial(j, n-k-2*j), j=0..n+1-k) else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
T[n_, k_] := (1/(n+1))*Binomial[n+1, k]*Sum[3^(2k - n + 3j)*Binomial[n + 1 - k, j]*Binomial[j, n - k - 2j], {j, 0, n - k + 1}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 02 2018 *)
PROG
(PARI) T(n, k) = binomial(n+1, k)*sum(j=0, n+1-k, 3^(2*k-n+3*j)*binomial(n+1-k, j)*binomial(j, n-k-2*j))/(n+1); \\ Andrew Howroyd, Nov 06 2017
(Python)
from sympy import binomial
def T(n, k): return binomial(n + 1, k)*sum([3**(2*k - n + 3*j)*binomial(n + 1 - k, j)*binomial(j, n - k - 2*j) for j in range(n + 2 - k)])//(n + 1)
for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Nov 07 2017
CROSSREFS
Diagonals include A129530, A036216.
Sequence in context: A169670 A372004 A341748 * A298850 A262292 A100543
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jul 21 2006
STATUS
approved