The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004319 Binomial coefficient C(3n,n-1). 13
 1, 6, 36, 220, 1365, 8568, 54264, 346104, 2220075, 14307150, 92561040, 600805296, 3910797436, 25518731280, 166871334960, 1093260079344, 7174519270695, 47153358767970, 310325523515700, 2044802197953900, 13488561475572645, 89067326568860640, 588671286046028640 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828. LINKS Milan Janjic, Two Enumerative Functions Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2. Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018. FORMULA G.f.: (g-1)/(1-3zg^2), where g = g(z) is given by g = 1 + zg^3, g(0) = 1, i.e. (in Maple command) g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z). - Emeric Deutsch, May 22 2003 a(n) = Sum[i = 0..n-1, C(i+2n, i) ]. - Ralf Stephan, Jun 03 2005 -2*(2*n+1)*(n-1)*a(n) + 3*(3*n-1)*(3*n-2)*a(n-1) = 0. - R. J. Mathar, Feb 05 2013 a(n) = sum(i = 1..n-1, (binomial(3*i - 1, 2*i - 1)*binomial(3*n - 3*i - 3, 2*n - 2*i - 2))/(2*n - 2*i - 1))/2. [Vladimir Kruchinin, May 15 2013] G.f.: x*2F1(5/3, 4/3; 5/2; 27x/4). - R. J. Mathar, Aug 10 2015 a(n) = n*A001764(n). - R. J. Mathar, Aug 10 2015 From Peter Bala, Nov 04 2015: (Start) With offset 0, the o.g.f. equals f(x)*g(x)^3, where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k,n). Cf. A045721 (k = 1), A025174 (k = 2), A236194 (k = 4), A013698 (k = 5), A165817 (k = -1), A117671 (k = -2). (End) G.f.: cos(t)/(2*sqrt(1 - (27*x)/4)) - sin(t)/(sqrt(3)*x^(1/2)), where t = arcsin((sqrt(27*x))/2)/3. - Vladimir Kruchinin, May 13 2016 a(n) = [x^(2*n+1)] 1/(1 - x)^n. - Ilya Gutkovskiy, Oct 10 2017 MAPLE A004319 := proc(n) binomial(3*n, n-1); end proc: # R. J. Mathar, Aug 10 2015 MATHEMATICA Table[Binomial[3n, n - 1], {n, 20}] (* Harvey P. Dale, Sep 21 2011 *) PROG (Maxima) a(n):=sum((binomial(3*i-1, 2*i-1)*binomial(3*n-3*i-3, 2*n-2*i-2))/(2*n-2*i-1), i, 1, n-1)/2; /* Vladimir Kruchinin, May 15 2013 */ (PARI) vector(30, n, binomial(3*n, n-1)) \\ Altug Alkan, Nov 04 2015 CROSSREFS Cf. A001764, A005809, A006013, A013698, A025174, A045721, A117671, A165817, A236194. Sequence in context: A172489 A033142 A082309 * A129324 A180218 A218991 Adjacent sequences:  A004316 A004317 A004318 * A004320 A004321 A004322 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 12:01 EST 2020. Contains 331295 sequences. (Running on oeis4.)