login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123897
Expansion of e.g.f.: exp(2*(exp(exp(x)-1)-1)/(2-exp(exp(x)-1))).
1
1, 2, 12, 102, 1118, 14936, 234626, 4227866, 85826368, 1935913962, 47994717062, 1296339943828, 37870560693662, 1189281013823922, 39939332825682940, 1427888927794137950, 54132633478133801302, 2168670060337770465208, 91530447701766220582442
OFFSET
0,2
LINKS
FORMULA
a(n) ~ n^(n - 1/4) / ((1 + log(2))^(1/4) * log(1 + log(2))^(n + 1/4) * 2^(n/(1 + log(2)) - 2*sqrt(n)/((1 + log(2))^(3/2) * sqrt(log(1 + log(2)))) + 3/(2 + 2*log(2)) + 1/2) * exp(n/(1 + log(2)) - 2*sqrt(n)/((1 + log(2))^(3/2) * sqrt(log(1 + log(2)))) - (1/log(1 + log(2)) - 2)/(2*(1 + log(2))))). - Vaclav Kotesovec, Jun 26 2022
MAPLE
seq(coeff(series(exp(2*(exp(exp(x)-1)-1)/(2-exp(exp(x)-1))), x, n+1)*n!, x, n), n = 0 .. 20); # G. C. Greubel, Aug 06 2019
MATHEMATICA
With[{m=20}, CoefficientList[Series[Exp[2*(Exp[Exp[x]-1]-1)/(2-Exp[Exp[x]-1])], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, Aug 06 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec(serlaplace( exp(2*(exp(exp(x)-1)-1)/(2-exp(exp(x)-1))) )) \\ G. C. Greubel, Aug 06 2019
(Magma) m:=20; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(2*(Exp(Exp(x)-1)-1)/(2-Exp(Exp(x)-1))) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 06 2019
(Sage) m = 20; T = taylor(exp(2*(exp(exp(x)-1)-1)/(2-exp(exp(x)-1))), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Aug 06 2019
CROSSREFS
Sequence in context: A137483 A113557 A245266 * A351762 A302357 A052693
KEYWORD
nonn
AUTHOR
Karol A. Penson, Oct 18 2006
EXTENSIONS
Terms a(16) onward added by G. C. Greubel, Aug 06 2019
STATUS
approved